
1

Multitenant Access Control for Cloud-Aware
Distributed Filesystems

Giorgos Kappes, Andromachi Hatzieleftheriou and Stergios V. Anastasiadis

Abstract—In a virtualization environment that serves multiple tenants (independent organizations), storage consolidation at the
filesystem level is desirable because it enables data sharing, administration efficiency, and performance optimizations. The scalable
deployment of filesystems in such environments is challenging due to intermediate translation layers required for networked file access
or identity management. First we define the entities involved in a multitenant filesystem and present relevant security requirements.
Then we introduce the design of the Dike authorization architecture. It combines native access control with tenant namespace isolation
and compatibility to object-based filesystems. We introduce secure protocols to authenticate the participating entities and authorize the
data access over the network. We alternatively use a local cluster and a public cloud to experimentally evaluate a Dike prototype
implementation that we developed. At several thousand tenants, our prototype incurs limited performance overhead below 21%, unlike
a solution from industry whose multitenancy overhead approaches 84% in some cases.

Index Terms—security services, cloud storage, distributed filesystems, datacenter infrastructure, identity management, authorization

F

1 INTRODUCTION

Cloud infrastructures are increasingly used for a broad
range of computational needs in private and public organi-
zations, or personal environments. In the datacenter, aggres-
sive systems consolidation is opening up new opportunities
for flexible data sharing among the users of one or multiple
tenants (e.g., constellations of co-resident applications [1]).
For commercial, analytics and social applications, data ex-
changes at low cost are a key benefit that valuably comple-
ments the reduced operational expenses already offered by
the cloud. As the cloud landscape is dominated by concerns
about the security and backward compatibility of systems
software, it remains open problem how to achieve scalable
file sharing across different virtualized machines or personal
devices serving the same or different tenants.

Existing solutions of cloud storage primarily provide
centralized management of entire virtual disks over a com-
mon backend (e.g., Ceph RDB, OpenStack Cinder). Al-
though they conveniently provision the capacity elasticity
of disk images, they do not facilitate native support of
scalable data sharing at file granularity. Similarly, identity
management in the cloud selectively grants coarse-grain
root authorization to administrative domains, but lacks
the fine granularity required to specify the permissions of
individual end users. Furthermore, the known file-based
solutions face scalability limitations because they either lack
support for multiple tenants, rely on global-to-local identity
mapping to support multitenancy, or have the guests and
a centralized filesystem (or proxy thereof) sharing the same
physical host [2], [3], [4].

Multitenant access control of shared files should securely

• G. Kappes and S. V. Anastasiadis are with the Department of Computer
Science and Engineering, University of Ioannina, Ioannina, Greece.

• A. Hatzieleftheriou is with Microsoft Research, Cambridge, UK. Work
contributed while the co-author was graduate student at the University of
Ioannina.

• Corresponding author: S. V. Anastasiadis (email: stergios@cse.uoi.gr)

isolate the storage access paths of different users in a config-
urable manner. Authentication and authorization have al-
ready been extensively studied in the context of distributed
systems [5], [6], [7]. However, a cloud environment intro-
duces unique characteristics that warrant reconsideration of
the assumptions and solution properties according to the
following requirements:

1) Each tenant should be able to specify the user iden-
tity namespace unrestricted from other tenants. The
simple application of identity mapping at large scale
adds excessive overhead.

2) The enforcement of authentication and authoriza-
tion functions should be scalably split across the
provider, the tenant and the client. Directory ser-
vices designed for private environments do not
easily support tenants or handle enormous user
populations.

3) Unless it is natively supported for flexible and
efficient storage access, file sharing requires com-
plex management schemes that are restrictive, error
prone and costly.

4) Access control should take advantage of secure
hardware (as root of trust) in machines administered
by the provider and the tenant, or in personal user
devices. Unless the virtualization execution is ade-
quately trustworthy, the tenants will simply refrain
from data sharing.

We introduce the Dike multitenant access control for out-
sourcing the complex functionality of storage authorization
and data sharing to cloud service providers. The proposed
design reduces the amount of systems infrastructure main-
tained by the tenant, and provides an effective interface
for storage interoperability among co-located administrative
domains. Thus, we enable shared data accesses among
numerous users, and facilitate distributed data processing
over large cluster installations.

2

We rely on an object-based, distributed filesystem to
scalably store the data and metadata of individual files.
A guest directly mounts the shared filesystem without
the involvement of a local or network proxy server. Each
tenant manages the identities and permissions of its own
users independently. By maintaining separately the access
permissions of each tenant, the filesystem securely isolates
the identity namespaces of the tenants but also enables
configurable file sharing across different tenants and hosts.
We provide the Dike prototype implementation of the
above approach over the Ceph distributed filesystem [8].
With microbenchmarks and application-level experiments,
we quantitatively demonstrate that our design incurs only
limited performance overhead.

We can summarize our contributions as follows:

• Description of security requirements in consolidated
cloud storage.

• Design of multitenant access control for an object-
based storage backend.

• Specification of secure protocols for the authentica-
tion of the participating entities and the authoriza-
tion of the data access over the network.

• Prototype implementation over a production-grade
distributed filesystem.

• Experimental performance evaluation of multite-
nancy overheads across different systems.

In a preliminary publication [9], we examined the idea
of native multitenancy support for the access control of
distributed filesystems. The present manuscript extends
significantly our prior published work by experimentally
motivating it and considering the context of current virtual-
ization environments; it covers comprehensively the entity
definition, threat model and security analysis of the pro-
posed solution; it specifies secure protocols for the authenti-
cation and authorization operations; and provides insightful
details about the comparative performance and resource
utilization of Dike over both a local cluster and the Amazon
public cloud across a microbenchmark and two application-
level workloads.

In the remaining document we first motivate our work
(§2) and define the system entities and assumptions (§3).
We specify the system design and secure protocols (§4),
and describe the prototype implementation as extension of a
distributed filesystem (§5). We present our experimentation
environment and explain several notable results (§6). We
point out previous related research in comparison to our
work (§7), and further discuss our results in the context
of latest advances in virtualization technology (§8). Finally
we summarize our conclusions and plans for future re-
search (§9).

2 MOTIVATION

Consolidation at the filesystem level is increasingly ad-
vocated as a desirable multitenancy paradigm because it
enables improved storage efficiency across the different
users and machines co-located in the datacenter [2], [3], [4],
[10]. The block-based interface isolates a virtual disk into
a protection domain fully controlled by the guest; this is
an attractive approach due to the versioning and migration

 0

 100

 200

 300

 400

 500

 600

 700

1 100 1000

In
d

ex
 b

u
ild

 t
im

e
(s

)

Number of Tenants

MapReduce / AWS
HekaFS over GlusterFS

Multitenancy
 overhead

375 375 375

0
170

281

Fig. 1. The overhead of identity mapping added by HekaFS over Glus-
terFS for multitenancy support. For 1 tenant we use vanilla GlusterFS.

properties of virtual disks [2]. Instead, a file-based interface
supports easy resource administration and optimized per-
formance, but also provides the “killer” advantage of con-
figurable guest isolation and sharing at fine granularity [2],
[3], [4], [10], [11].

Given the increasing popularity of filesystem storage,
the OpenStack Manila is an architecture introduced to in-
tegrate filesystem shares (i.e., shared file trees) with guest
machines [12]. However, the specification of the Manila
protocol that connects the filesystem to the guest is work
in progress. Today, cloud storage resources are typically
isolated across individual tenants at the network level in-
stead of actually being shared at the filesystem level. The
OpenStack Keystone service [13] (or the AWS AIM [14])
federates the identities of different tenants (accounts), but
only manages the administrative entities rather than the end
users of the OpenStack (AWS) services.

Cloud storage security could be preferably enforced at
the infrastructure rather than the application level for en-
hanced functionality and improved resilience to program-
ming bugs in the application or the guest system [15]. In
analytics workloads, a shared distributed filesystem often
maintains the accumulated data and allows temporary local
caching at compute nodes for processing. Thus, a multi-
tenant filesystem could facilitate the storage consolidation
for collaborative analytics jobs of the same or different
customers [16]. The trend toward lightweight virtualization
through containers or library operating systems can take
advantage of secure storage offloading to the provider and
relieve the guest machines from unnecessary complexity
and overhead [17], [18]. Similarly, a thin filesystem client
can efficiently integrate personal devices into cloud shared
folders, especially as security features are included in the
processor chipset hardware [19].

We experimentally motivate our work by examining the
performance overhead of identity mapping currently used
by HekaFS [20] to support multitenancy over the GlusterFS
distributed filesystem (§ 6.2.2). We consider the Phoenix v2.0
[21] shared-memory implementation of MapReduce, and
use the reverse index application to generate the full-text
index of a 1.01GB file collection. In Fig. 1, we measure the
duration of index build over GlusterFS for 1 tenant, and

3

over HekaFS for 100 or 1,000 tenants. The reverse index
application only takes 375s in GlusterFS, but requires 545s
(45% more) or 656s (75% more) in HekaFS configured with
100 or 1,000 tenants, respectively. From measurements of the
I/O system calls, we found the increased number of tenants
to be accompanied by higher latency in specific metadata
operations (e.g., opendir, close) of the filesystem.

Below we examine examples of virtualization in which
file-based storage consolidation makes sense for (i) fine-
granularity access control, (ii) storage efficiency, (iii) data
sharing, and (iv) administration flexibility.

Virtual Desktops An enterprise private cloud stores the
desktop filesystems of personal thin clients. Each desktop
root filesystem is stored as a separate directory with access
limited to a single client. As an optimization, the root
directory of each client can be branched out from a shared,
read-only directory.

Shared Workspace A shared filesystem maintains the
home directories of collaborating users. Typical file ex-
changes of unstructured data (e.g., documents, images) are
enabled through shared folders in a Dropbox-like manner.

Software-as-a-service A software-as-a-service provider
supports business customers with disjoint end users [22].
Each business customer is treated by the filesystem as a
tenant with separate application files in writable mode (e.g.,
databases) and shared system files in read-only mode (e.g.,
libraries of executable code).

Software Repository A public cloud provides a shared
software repository that can be forked into separate
branches by different groups of developers. A group obtains
writable access to its own branch, and read-only access to
branches of other groups. A similar scheme can be used to
share scientific datasets.

3 SYSTEM REQUIREMENTS

We outline the general requirements of our system through
the goals, assumptions, system trust and threat model.

3.1 Goals

In the proposed access control, we set the following goals:

1) Isolation Each tenant is free to choose identities
for its users. Thus we isolate the identity space
and access control of different tenants to prevent
namespace collisions.

2) Sharing Provide flexible access control to enable
secure file sharing within a tenant or among differ-
ent tenants.

3) Efficiency Natively support multitenant access
control to achieve the required performance and
scalability for enormous numbers of users or files.

4) Interface Leverage the architectural characteristics
of widely-adopted filesystems for backward com-
patibility with existing applications.

5) Manageability Maintenance support at the file
level allows the cloud provider to uniformly and
flexibly manage the storage resources of different
tenants.

Domains

D: set of domains in the system

P : set of providers in the system (= {p} by default)

T : set of tenants in the system

D = P
⋃

T

s(d): set of all domains sharing any file with domain d ∈ D

Users

U : set of users in the system

Ud: set of all users belonging to domain d ∈ D

U =
⋃

d∈D Ud, with Ui

⋂
Uj = ∅, ∀i, j ∈ D

Files

F : set of files in the system

F i
d: all files in domain d ∈ D accessible by domain i ∈ D

Fd: set of all files owned by domain d ∈ D (i.e., Fd = F d
d)

F =
⋃

d∈D Fd, Fi

⋂
Fj = ∅, ∀i, j ∈ D

F i: set of all files accessible by domain i ∈ D

F i =
⋃

d∈s(i) F
i
d, with s(i) as defined above

Permissions

P i
d(u, f): permissions of user u ∈ Ui to file f ∈ Fd, i, d ∈ D

P i
d(f): per-user permissions of file f ∈ Fd in domain i ∈ D

P i
d(f) =

⋃
u∈Ui

P i
d(u, f)

P d̄
d (f): permissions of file f ∈ Fd in domains i ∈ D, ∀i 6= d

P d̄
d (f) =

⋃
u∈Ui, i 6=d P

i
d(u, f)

Pd(f): per-user permissions of file f ∈ Fd in all domains

Pd(f) = P d
d (f)

⋃
P d̄
d (f)

Fig. 2. Summary of basic entities and their properties in the Dike system.

3.2 Definitions and Assumptions

The user is an entity (e.g., individual or application) that
receives authorizations and serves as unit of accountability
in the system. We call tenant an independent organization
whose users consume networked services from a cloud
provider [22]. The domain generally refers to any organiza-
tion, including the provider itself, that accesses the cloud
resources for consumption or administration purposes. The
directory refers to a registry of users and their attributes,
while folder is a catalog of files in the filesystem.

A server implements service actions, and a client provides
local access to a service over the network. We collectively
refer to the clients or servers of the system as nodes. Through
their local client, the users of a tenant access storage services
at file granularity. The user who creates a file in a tenant
is the owner user of the file and assigns access permissions
with a discretionary model. A file is owned by the tenant to
which the owner user belongs. In case of a file shared across
multiple tenants, the assignment of access rights in an non-
owning tenant is undertaken by the administrator user of
that tenant.

In Fig. 2 we summarize some basic entities with their
properties in the Dike system. The set of domains D is
derived from the union of the tenant set T with the provider
singleton P (extension for multiple providers left for future
work). The sets of users belonging to different domains

4

are disjoint and disjoint are also the sets of files owned by
different domains (∀i, j ∈ D, Ui

⋂
Uj = Fi

⋂
Fj = ∅). The

permissions of file f owned by domain d is derived from the
union of the per-user file permissions across all the domains
in the system (Pd(f) = P d

d (f)
⋃
P d̄
d (f)).

We adopt the architecture of a distributed object-based
filesystem because it is scalable and typically used in cloud
environments. The system consists of multiple metadata and
object servers: a metadata server (MDS) manages information
about the file namespace and access permissions, and an ob-
ject server (or object storage device, OSD) stores file data and
metadata in the form of objects. A client can only access an
OSD after an MDS communicates to the OSD the necessary
authorization capability (signed token of authority) for the
requested access.

3.3 System Trust
An independent provider operates the datacenter nodes
at which the filesystem clients and servers run. Multiple
virtual nodes generally share a physical host. A client runs
on a virtual node inside the datacenter or on an external
mobile device with sufficient hardware security or virtual-
ization support (e.g., ARM TrustZone [23], cTPM [19]). A
secure protocol for clock synchronization keeps the time
synchronized across the nodes of the system.

Standard cryptographic primitives ensure the confiden-
tiality, integrity and freshness of the network communi-
cation. Secure hardware (e.g., Trusted Platform Module)
at each physical machine applies static measurement to
certify the integrity of the system software stack [24], [25]. A
cryptographically signed statement of authenticity serves as
certificate of node integrity [5]. A central monitor (attestation
server) inside (or outside [26]) the datacenter applies static
remote attestation to build up the infrastructure trust.

The distributed filesystem protects the confidentiality
and integrity of stored data and metadata by permitting
networked accesses to authorized users and handling the
revocation or delegation of permissions. The filesystem in-
frastructure enforces the access policy at the granularity of
individual files, although possible extension to file collec-
tions or byte ranges within a file is compatible with our
design [27], [28].

The co-located tenants may not trust each other. Each
tenant is responsible to specify the file access permissions of
its individual users. A tenant can share data with other ten-
ants under the access permissions specified to the provider.
In the terminology of the attribute-based access control
model with tenant trust (MT-ABAC [29]), we follow the
type-γ trust that lets the trustor tenant control the existence
of the trust relation, and the trustee tenant control the
assignment of cross-tenant attributes to its own users.

3.4 Threat Model
The adversary can be an external attacker or authenticated
user remotely attempting unauthorized filesystem access by
trying to steal or generate certificates, keys and tickets, or
using network attacks to eavesdrop, modify, forge, or replay
the transmitted packets of the filesystem protocols. The
unauthorized requests may attempt to read or tamper with
the stored data and metadata of the filesystem, including the

access policy that grants file operation permissions within
and across tenants or the provider. The adversaries may
also exchange certificates through an out-of-band channel
in an attempt to bypass the sharing policy enforced by the
filesystem.

In general, an employee of the provider (honest-but-
curious) may attempt to read the filesystem data of the ten-
ants, but does not have incentive to corrupt the filesystem
state or collude with adversaries. A tenant may choose to
activate data sharing with the provider for enabling security
services supported by the system (e.g., anti-virus scanning).
For transparency reasons, the file owner can always use the
tenant view to inspect the applicable access policy including
possible file sharing with other tenants and the provider.

The privileged software (e.g., hypervisors) is measured
before being trusted to run system services and isolate the
processes of different tenants. We do not consider run-
time integrity monitoring (e.g., to prevent zero-day attacks),
given the lack of established methods for dynamic remote
attestation in virtualization environments [30]. We also leave
out of scope the malicious manipulation through physical
access or side-channel attacks (e.g., power analysis, cache
timing, bus tapping). We target filesystem access control
without any explicit attempt to provide general solutions to
denial of service, key distribution, traffic analysis, and gen-
eral multitenant sharing of resources other than storage [31].

3.5 Encryption and keys
Public keys are used as identities that uniquely identify the
entities of the system, such as users and services. A tenant
is identified through the key of its tenant authentication
service. For privacy protection, a privacy certification au-
thority ensures the unlinkability of multiple keys referring
to a single user (this technique is not currently supported
in our prototype implementation) [23]. The private keys of
an entity can only appear in plaintext form at the volatile
memory of an attested node. They are stored persistently
in encrypted form, or partitioned across multiple nodes for
improved protection [32]. The interacting entities securely
communicate over symmetric keys, which are agreed upon
with public-key cryptography dynamically. We leave out-
side the scope of the present work the consideration of data
encryption by the filesystem servers on the storage media.

4 SYSTEM DESIGN

Next we introduce the Dike architecture of multitenant
access control for networked storage shared at the file level.

4.1 Identity Management
Identity management refers to the representation and recog-
nition of entities as digital identities in a specific do-
main [33]. A multitenant environment complicates the se-
cure operation of a shared filesystem due to potentially
conflicting needs from multiple independent organizations.
Below we consider possible schemes of identity manage-
ment for multitenant filesystems.

Centralized A common directory administered by the
provider maintains the identities of users for all the ten-
ants [34]. Such an approach lacks the required scalability

5

Client

OSD

Client
Tenant

Authentication
Service

Ut

Provider
Authentication

Service

Up

MDS

Attestation Server

Authentication

Metadata Ops

Tenant t

Provider p

Fig. 3. The hierarchical architecture of Dike. The interaction of the
attestation server with all the nodes is omitted for readability. We use
dark gray background for the new entities added in Dike with respect to
an existing object-based filesystem.

and isolation because it centrally manages all the identities,
and restricts the tenants from making free identity choices.

Peer-to-peer Assuming globally unique identities, dif-
ferent tenants communicate directly with each other to
publicize the identities of their users and groups [35]. Cross-
tenant file sharing is possible through direct inclusion of
remote users into the access policy of a file. A drawback
is the need to periodically keep up to date the contributed
users and groups across the collaborating tenants.

Mapped A shared filesystem maps the identities of users
to globally unique identities [4]. For instance, the global
identity space is partitioned into disjoint ranges, and each
range is assigned to a different tenant. Identity mappings
incur extra runtime overhead because they are applied dy-
namically whenever a server receives a request. Moreover,
granting the permissions of local-user classes to remote
users opens up the way for violating the principle of least
privilege.

Hierarchical In order to isolate its identity space, each
tenant maintains a private authentication service to manage
locally the identities of its users. The authentication services
of legitimate tenants are registered with the underlying
common filesystem of the provider. Requests incoming from
the clients of an approved tenant are processed by the
filesystem according to the stored access permissions of each
file.

4.2 Authentication
In Dike we adopt the hierarchical identity management
because it offers the isolation and scalability properties
required for multitenancy. An attestation server is used to
bootstrap the system trust (§3.3). We partition the task of
filesystem entity authentication among the provider and the
tenants (Fig. 3). Each tenant uses a separate tenant authenti-
cation service (TAS) to authenticate the local clients and users.
Additionally, the provider operates a provider authentication
service (PAS) to authenticate the metadata servers, object
servers and tenant authentication servers of the system.
The clients (users) are distinguished into the tenant clients
(users) that can only access the resources of the filesystem
belonging to a particular tenant, and the provider clients
(users) that are trusted to access the entire filesystem.

The user identities and the file permissions are explicitly
visible to the filesystem infrastructure. This is necessary in
order to run the enforcement of the access-control policy as

(4) Metadata Request

(2)
A

uthe
nticate

U
se

r

Tenant
Authentication

Service

Ut

Provider
Authentication

Service

Up

MDS

Provider p

(2)
A

uthe
nticate

U
se

r (3
)

U
se

r
C

er
tif

ic
a

te

(1)
Connect

(5) Data Ticket

User u

Client

Tenant t

OSD

Fig. 4. Over dashed lines in the parentheses we enumerate the steps
of file access by a user in the Dike multitenant access-control system.
Important steps required for the attestation and authentication of the
system nodes are omitted for readability. The new entities of Dike are
denoted with dark gray background.

a service of the provider rather than the tenant. For accesses
of provider users the authentication process remains similar
with the only difference that both the clients and users are
directly authenticated by the PAS rather than a TAS.

4.3 Operation Example
In Fig. 4, we show the interaction between a tenant client
and the filesystem nodes in order to allow a user data
access from the filesystem. We follow the involved steps
at a relatively high level before introducing next the secure
protocols (§4.4). A client is initially authenticated by the TAS
(not shown). The tenant user connects to the client (step 1).
On behalf of the user, the client contacts the TAS (2) and
receives back a user authentication certificate (3) to request
filesystem access (4) from the metadata server (MDS). The
MDS validates the received user authentication using a PAS-
issued certificate of TAS. Then, the MDS issues to the client
a data ticket (5) to access an object server (steps 6-7). The
data ticket securely specifies the user and permissions of
the authorized operation over a file.

4.4 Secure Protocols
Next we use secure protocols to describe the authentication
and authorization steps in more detail. In the protocol
definitions, the participating entities include the privacy
certification authority v, the attestation server a, the user
u, the client c, the TAS t, the PAS p, the metadata server m,
and the object server o. The notation x → y : z denotes the
transmission of message z from entity x to entity y.

The private and public keys of entity x are denoted
as K−1

x and Kx respectively. We use the symbol Kxy for
the secret key established between entities x and y. The
notation {z}K denotes the message z encrypted with the
secret or public key K , or signed with the private key K .
The operation H(z) refers to the hashing of message z. We
use the letter N for referring to a nonce, and the symbols
Ts and Te for referring to the starting and ending time of a
ticket validity.

The symbols C , P , T , M and O stand for the client, PAS,
TAS, MDS and OSD sets respectively. In our design a TAS
serves as proxy for a tenant and the PAS as proxy for the
provider. The attestation server knows the public key Kv of
the privacy certification authority, and all the nodes receive

6

P0: Attestation by server a of entity x ∈ C, T, P,M , or O

x → a : {{Kx, H(w), N}K−1
AIK(x)}Kxa,

{Kxa}Ka, {KAIK(x)}K−1
v

a → x : {Ca
x , N + 1}Kxa

Ca
x = {Kx, Ts, Te}K−1

a

P1: Authentication by PAS p of entity x ∈ C, T,M , or O

x → p : {Ca
x ,Kxp, N

(1)}Kp

p → x : {Cp
x, N

(1) + 1}Kxp

Cp
x = {Kx, T

(1)
s , T

(1)
e }K−1

p

P2: Authentication of client c by TAS t

c → t : {Ca
c ,Kct, N

(2)}Kt

t → c : {Cp
t , Ct

c, N
(2) + 1}Kct

Ct
c = {Kc, T

(2)
s , T

(2)
e }K−1

t

P3: Authentication of user u by TAS t

c → t : {{Ku, N
(3)}K−1

u }Kct

t → c : {Ct
u, N

(3) + 1}Kct

Ct
u = {Ku, T

(3)
s , T

(3)
e }K−1

t

Fig. 5. Protocols for the authentication of a tenant user in Dike.

the public key Ka of the attestation server. Additionally, the
TAS, MDS, and OSD know the public key Kp of the PAS,
and each client securely obtains the public keys Kp, Kt,
Km, and Ko.

The privacy certification authority v signs the public part
of the attestation identity key KAIK(x) previously provi-
sioned for entity x through a standard protocol [30]. Then
the remote attestation server a verifies the authenticity of
a node (software/hardware) configuration w through pro-
tocol P0. If the verification succeeds, the requesting entity
obtains an attestation certificate signed with the private key
K−1

a . Then each entity x, standing for t, m or o, uses the
protocol P1 to get authenticated by the PAS and receive the
certificate Cp

x. A tenant client c uses the protocol P2 to get
authenticated by the TAS t, establish a secure channel over
secret key Kct, and receive the certificate Ct

c.
On behalf of user u, an authenticated client c applies the

protocol P3 to receive a user certificate Ct
u signed by the TAS.

The client c ensures its authenticity by holding the secret
key Kct, and the user u proves her authenticity by having
the client sign the request with the private key K−1

u . Using
protocol P4, the client c agrees on a secret key Kcm with the
metadata server m. Then, the client applies protocol P5 to
request the data ticket T m

c(u)o on behalf of user u to access
file f . In addition to the public keys Kc and Ko that specify
the client and the object server, the data ticket contains the
handle (handle) of file f and the file permissions (perms)
applying to user u.

With protocol P6, the client transmits to OSD o the
request for operation op on the handle, encrypted with
Kc(u)o, and receives back the reply (opreply). The secret
key Kc(u)o is encrypted with the public key Ko. The above
steps are similar in the case of a provider user accessing
the filesystem, although both the user and client are directly
authenticated by the PAS rather than the TAS.

P4: Secret Kcm shared between client c and server m

c → m : {Cp
t , Ct

c,Kcm, N (4)}Km

m → c : {N (4) + 1}Kcm

P5: Data ticket for file f to client c on behalf of user u

c(u) → m : {Ct
u, f,N

(5)}Kcm

m → c(u) : {T m
c(u)o, N

(5) + 1}Kcm

T m
c(u)o = {Kc,Ko, perms, handle, T

(5)
s , T

(5)
e }K−1

m

o may be replaced by object server group g for efficiency.

P6: Run op on handle for client c on behalf of user u

c(u) → o : {T m
c(u)o, op,N

(6)}Kc(u)o, {Kc(u)o}Ko

o → c(u) : {opreply,N (6) + 1}Kc(u)o

Fig. 6. Protocols for authorizing a filesystem request in Dike.

We use timestamps to ensure the freshness of the is-
sued tickets and certificates. We detect replay attacks in
the exchanged messages using nonces and having them
increased by one before they are returned. Additionally, in
several protocols (P0, P1, P2 and P4) we use nonces to
detect potential unauthorized modification of the request
and confirm the authenticity of the recipient server.

4.5 Multiview Authorization
In the multiview authorization methodology that we intro-
duce, the filesystem selectively makes the metadata acces-
sible to different entities in the form of views (Fig. 7). The
filesystem administrator of the provider uses the provider
view to specify permissions for entire tenants or individual
users. Instead a tenant administrator uses a tenant view to
configure the metadata made accessible by the provider
to the respective tenant. A user obtains filtered access to
a subset of the provider or tenant view according to the
applicable permissions.

The authorization policy of the filesystem is specified in
the permissions maintained for each file by the MDS. We
support two types of access permissions for a file or folder,
the Unix and the Access Control List (ACL). The MDS iso-
lates on distinct data structures (e.g., linked lists) the policies
of a file that apply to different tenants. It additionally stores
separately the policy for the provider users.

A Dike access policy can configure a file as private or
shared across the users of a single or multiple tenants and
let the filesystem natively support cross-tenant accesses.
The certification hierarchy in general-purpose public-key
cryptography can have an arbitrary number of levels. In the
past, this possibility has received negative criticism due to
the potential complexity that it introduces [35]. Instead, Dike
only uses a two-level hierarchical structure to let the TAS of
each tenant be certified by the PAS. Dike also differs from
the multi-realm Kerberos protocol, in which remote accesses
require tickets of the remote realm to be granted either
directly, or hierarchically through a common ancestor [36].

4.6 Inheritance and Common Permissions
Cloud storage systems generally handle an enormous num-
ber of files. Managing several permissions for each file in-

7

TENANT1 VIEW

/

T1

bob

alice

Share

Images

/

T1

T2

bob

alice

...

bob

Share

Images

PROVIDER VIEW

nick

TENANT2 VIEW

/

T2

bob

nick

Share

Images

Fig. 7. Provider and tenant view of the filesystem metadata in the
multiview authorization methodology of the Dike system.

Folder

Folder

Tenanti Tenanti

Tree Folder
Permissions

Tree File
Permissions

Tenanti Tenanti Private File
Permissions

Tenantk

Tree Folder
Permissions

Tree File
Permissions

Fig. 8. Inheritance and common permissions in Dike with tree file and
folder permissions. At the bottom right corner, we also show an example
of private file permissions that are limited to individual files.

volves considerable space and time requirements. A related
study found that users rarely change the access rights of
single files [37]. As users prefer to create new files with
permissions inherited from the parent folder, inheritance in
storage access control is generally recommended.

Dike supports the inheritance of access permissions as a
convenience to the user. In order to reduce the load of the
object and metadata servers, we also allow common per-
missions to be shared among the different files of the same
folder (Common type in Table 1). From our isolation goal,
it follows that the inheritance and common permissions are
enforced separately within each tenant.

The tree folder permissions refer to the permissions of
the folder itself, and the tree file permissions refer to the
permissions of the files directly contained in the folder.
We collectively call tree permissions the folder and file per-
missions of the folder. By default the tree permissions are
initialized according to the environment of the user (similar
to the Unix umask semantics). Inheritance applies trivially
in this case in the sense that all files and folders are created
with the same default settings (Default type in Table 1).

As a second option, our design allows an authorized
user to explicitly specify the settings of the tree permissions
in a folder (Custom type in Table 1). Then, the specified
permissions are inherited into the files and folders of the
subtree rooted at the folder. For implementation simplicity,
we allow the tree folder permissions to be physically copied
to the underlying folders. Instead, the tree file permissions
are common across the children files without being copied
separately to each child.

Additionally, we can explicitly set the permissions of an
individual file to private file permissions (Custom in Table 1).
These are distinct from the tree file permissions inherited
from the parent folder. In Fig. 8 we present an example

TABLE 1
Permission types supported in Dike. The Custom type refers to
user-specified permissions potentially different from the Default.

Permission Type Inherited Common Default Custom
Tree Folder X X X
Tree File X X X X
Private File X

of two folders and multiple files adopting the tree file per-
missions or the private file permissions. We summarize the
characteristics of the different permissions types in Table 1.

The file and folder permissions are statically specified
either manually by an authorized user or automatically with
the default settings. Alternatively, our design lets the system
determine dynamically the tree permissions of a folder based
on the permissions of the respective subtree. For instance,
the tree file permissions of a folder can be automatically set
identical to the permissions of the first file created in the
folder. Over time, the tree file permissions can be adjusted
according to the permissions that apply to the majority of
the files in the underlying subtree. A similar approach can
be followed for the tree folder permissions.

4.7 Security Analysis
Next we analyze the properties of the Dike architecture by
explaining the secure steps followed by the protocols and
describing the potential implications of tenant and provider
attacks.

Permissions granted In Dike, the provider cooperates
with the tenants to enforce the filesystem access control.
Only authenticated clients and users are allowed to access
the filesystem. The data is only disclosed to or modified by
users authorized by the system according to the permissions
specified by the owner user. A user can only access the
data belonging to or shared with her authenticating tenant.
Accordingly, a user operation is restricted to the minimum
of the file access permissions specified in the policy of the
file owning tenant and the user authenticating tenant.

Authentication enforcement The client and user are
authenticated by the TAS (or PAS) before they can receive
the authorization data ticket from the MDS to securely
access a particular OSD. The MDS verifies the authenticity
of the requesting client and user before it signs the data
ticket with its private key to make any unauthorized tam-
pering detectable. Then, the authenticated user accesses a
file according to the policy specified at the MDS. The OSD
uses the public key of the MDS to verify the authenticity
of the data ticket and returns the requested data encrypted
with the secret key agreed with the client.

Authorization enforcement The data ticket is securely
transferred from the MDS to the OSD over the Kcm and the
Kc(u)o secret keys through the client. The OSD is responsible
to check the requested operation against the permissions
securely contained in the data ticket and enforce the access
control specified at the MDS. The authorized file access is
restricted to a specific tenant and user as requested by the
protocols that establish the key Kcm and ticket T m

c(u)o. Direct
filesystem accesses from the provider users similarly require
user authentication from the PAS before they can establish
communication with the MDS.

8

Sharing violation The support for file sharing between
different tenants is enabled through activation of the nec-
essary access permissions at the MDS. The clients or users
from different tenants cannot collude to bypass the MDS
policy enforcement because an issued data ticket specifies
the authorized client and user belonging to a specific ten-
ant. Potential cross-tenant policy violation is prohibited by
design because the filesystem access is restricted through
the tenant view, and the permissions of different domains
are stored and managed separately by the MDS.

Tenant attacks An attacker is unlikely to penetrate the
client of a tenant and impersonate a legitimate user, because
a user certificate cannot be requested without access to the
user’s private key within an attested client. The harm from
a tenant user impersonation is limited to the private or
shared files that are accessible by the compromised tenant,
and cannot affect the system-wide access policy. Depending
on the severity of the attack, possible steps to isolate the
attacker include the revocation of access permissions to
the compromised user by the tenant and disabling of file
sharing to the penetrated tenant by the provider.

Provider attacks The attack is more challenging in the
unlikely case that it compromises an administrator account
of the provider and exposes the system permissions. The
implications of such an attack can be contained if the tenants
apply external protection techniques or the provider sup-
ports remote monitoring from outside the cloud to detect
the incident [26], [38]. More generally, in lack of trust to
the provider, a tenant may externally apply techniques of
encryption, hashing, auditing and multi-cloud replication
to strengthen end-to-end confidentiality and integrity, or en-
sure data restoration in case of a provider compromise [39].

5 SYSTEM PROTOTYPE

Next we describe our implementation of the Dike mul-
titenant access control over a distributed filesystem. The
prototype development is based on Ceph, a flexible plat-
form with scalable management of metadata and extended
attributes [8].

5.1 Outline of Ceph

There are four components in Ceph: the clients provide ac-
cess to the filesystem, the metadata servers (MDSs) manage
the namespace hierarchy, the object storage devices (OSDs)
store objects reliably, and the monitor (MON) manages the
server cluster map [8]. Although data and metadata are
managed separately, they are both redundantly stored on
OSDs.

A registered client shares a secret key with the MON.
When a user requests a filesystem mount, the respective
client receives a session key after being authenticated by the
MON. The session key is encrypted with a secret key shared
between the client and the MON. The client with the session
key securely requests the desired Ceph services from MON
and receives an authenticating ticket for the MDSs and
OSDs. The authenticating ticket is encrypted with a secret
key that is shared among the MON, MDSs and OSDs [40].

The MDS maintains in an entry of a session map the state
of communication with a client. Unless it fails, a session

EXTENDED ATTRIBUTES

MAP

INODES

UID

GID

MODE

...

XATTRS

...

Native User Permissions

ClientClientClient

ClientClientMDS

ClientClientMON

ClientClientOSD

OBJECT POOLS

...

Permissions

Permissions

Permissions

TID1

TID2

...

TIDN

Auth

Fig. 9. Prototype implementation of the Dike multitenant access-control
system, based on the extended attributes of the filesystem. We use gray
background for the entities that we added to or modified from the Ceph
object-based filesystem.

remains active until the client unmounts the filesystem. At
first communication with an MDS, the client uses the ticket
to initiate a new session. The MDS receives a message of
type MClientSession from the client, initializes the session
state, and sends back a capability (ticket) for the root
directory. From the capability the client derives an object
identifier and the placement group of OSDs that contain the
object replicas.

5.2 Support for Multitenant Access Control
We expanded Ceph to experiment with the scalability of
native multitenant access control according to the Dike
design (Fig. 9). Apart from the added multitenancy support,
our current prototype implementation relies on the existing
authentication and authorization functionality of Ceph. As
a result, the tasks of both the TAS and PAS are currently
carried out in part by the MON.

Session In a filesystem mount request to an MDS, a
client has to uniquely identify the accountable tenant. In our
current prototype, we derive a unique tenant identifier (TID)
by applying a cryptographic hash function to the public key
of the tenant (we use RIPEMD-160). The client embeds the
TID into an expanded MClientSession request, and sends
it to the MDS over the secure channel established with the
session key. The MDS extracts the TID from the received
message, and stores it in the session state. The secure session
between the filesystem and an authenticated client can only
serve the actions permitted to the users of the identified
tenant.

Permissions Our current implementation only supports
Unix-like permissions for users and groups, but it makes
straightforward the addition of access-control lists in a fu-
ture version. The Ceph version that our prototype relied on
did not directly support access-control lists, but newer Ceph
releases have been gradually adding this feature. Based
on the supplied TID, a client obtains tenant view of the
filesystem for access by a tenant user. The permissions of
the tenant view are stored in the extended attributes of
the filesystem. For global configuration settings, we also
support the provider view, which enables full access per-
missions to the administrator of the entire filesystem. The
respective permissions are stored in the regular inode fields.

Separately for each tenant, a folder stores two types of
permissions: the tree folder permissions, which control the
access of the folder; and the tree file permissions, which

9

TABLE 2
New methods that we added to class CInode of Ceph for managing the

tenant permissions of an inode in the Dike prototype.

Method Description
bool check_tenant_perm() Check tenant permission
void grant_tenant_perm() Grant tenant permission
void revoke_tenant_perm() Revoke tenant permission
void set_perm_uid() Set user ID
void set_perm_gid() Set group ID
void_t set_perm_mode() Set file permissions
uid_t get_perm_uid() Return user ID
gid_t get_perm_gid() Return group ID
mode_t get_perm_mode() Return file permissions

control the access of the files contained in the folder. We
allow a collection of files to share the permissions specified
in the tree file permissions of their parent folder.

Alternatively, a user can explicitly set the access permis-
sions of a particular file. Accordingly, we create new private
file permissions for the respective tenant. In order to authorize
the file request of a user, the MDS initially searches the file’s
extended attributes for the permissions attribute. If a private
permissions attribute exists, it is used for the authorization.
Otherwise, the MDS applies the tree file permissions stored
in the extended attributes of the parent folder.

Development We developed the Dike prototype by
modifying the client and the metadata server (MDS) of
the CephFS distributed filesystem. The implementation re-
quired the addition of 2023 commented C++ lines into
the codebase of Ceph v0.61.4 (Cuttlefish). We extended the
client interface with two new operations to grant or remove
tenant access for a file or a folder (ceph grant tenant access
and ceph revoke tenant access). These operations specify the
ownership and permission on a file or folder in a way
similar to setattr, but they additionally accept a tenant
ID as an argument.

For each of these two operations we also added a corre-
sponding handler at the MDS that invokes the respective
method at a CInode object to assign or remove tenant
permissions. In the CInode class of Ceph, we added a total
of nine new operations to set and retrieve the permissions
of tenants and individual users (Table 2). The Dike imple-
mentation required to modify all the filesystem functions of
the original Ceph related to permissions handling, including
the inode constructor.

We manage the extended attributes in memory as key-
value pairs stored in a C++ map structure (red-black tree).
As key, we use the string tid:model:perm, in which the
field tid holds the tenant identifier, the perm specifies
the type of permissions, and the model is set to "UNIX"
for Unix permissions or "ACL" for access control list. In
the Unix model, we set the value of the key-value pair to
"uid:gid:mode", where the uid and gid fields refer to
the user and group identifiers, and the mode contains the
file permissions.

If the client uses the provider view, then we directly up-
date the regular inode of the filesystem. Otherwise we save
the user/group IDs and the file permissions into extended
attributes keyed by TID; furthermore, we update the regular
inode of the filesystem according to the user/group IDs and
the file mode of the parent inode.

A file capability is only sent to a client whose authenti-
cating tenant is permitted to access the file. In order to en-
force the access policy, we expanded the returned capability
of Ceph to include the tenant identifier and the respective
file ownership metadata. A client cannot directly read or
write the access control information stored in the extended
attributes of a file. Instead, only the filesystem is allowed to
access the extended attributes on behalf of authorized client
requests.

Finally, we implemented an administrator tool that com-
bines the functionalities of the Unix chmod and chown
utilities, but accepts a tenant ID as an additional argument.
The tool invokes the new calls that we added to the client
interface and can be used by a file system administrator to
assign or revoke tenant permissions on files and folders.

6 PERFORMANCE EVALUATION

We experimentally examine the scalability of Dike along
several parameters, and compare the respective overhead
to that of Ceph and other systems.

6.1 Experimentation Environment
We conducted several experiments on a local cluster and the
Amazon public cloud using three different benchmarks.

Local cluster Our first testbed relies on an isolated local
cluster consisting of 64bit x86 servers running Debian 6.0
Linux. We used up to a total of 11 machines: 5 machines
for the filesystem nodes and 6 machines for the client hosts.
Each filesystem server is equipped with 1 quad-core x86-
64 CPU at 2.33GHz, 3-6GB RAM, 2 SATA 7.2KRPM 250GB
hard disks, 1Gbps link and Linux v3.9.3. A server with 6GB
RAM is used as MDS. From the remaining 4 servers with
3GB RAM, 3 are OSDs and 1 is MON. Each OSD uses the
first disk to store the root filesystem and a journal file of
1GB size, and it has the second disk formatted with the XFS
filesystem to store objects. Each client host is equipped with
2 quad-core x86-64 CPUs at 2.33GHz, 4GB RAM, 2 SATA
7.2KRPM 500GB hard disks, 1Gbps link, and runs Linux
v3.5.5 with Xen v4.2.1. We set up each client guest with 1
dedicated core, 512MB RAM, 2 blktap devices for root and
swap partitions, and Linux v3.9.3.

Cloud platform Our second testbed consists of EC2
instances from the US East region of the Amazon Web
Services (AWS). We use a total of 36 instances: 3 instances of
type ”m1.large” (4x64bit cores, 15GB RAM) as fileservers, 32
instances of type ”t1.micro” (1x64bit core, 615MB RAM) as
microbenchmark clients, and 1 instance of type ”c.medium”
(2x64bit cores, 1.7GB RAM) as application client. All in-
stances run Red Hat Enterprise Linux Server v6.4 with
Linux v3.9.3. On the three fileservers we alternatively run
three servers of Ceph, Dike, GlusterFS, and HekaFS with
replication factor 3 (for GlusterFS and HekaFS see §6.2.2,
§7). GlusterFS and HekaFS manage both data and metadata
on all three fileservers. Instead, Ceph and Dike run an OSD
instance on each fileserver, but also use two of the fileservers
to additionally run the MDS and the MON, respectively.
(Ceph uses a single MDS, because the version that we used
provides unstable support of multiple active MDSs.)

Benchmarks We measure the metadata performance us-
ing the mdtest v1.9.1 from LLNL [41]. This is an MPI-based

10

mdtest / Local - 1 Client

 0

 5

 10

 15

 20

 25

 30

 35

1 6 12 24

T
h

ro
u

g
h

p
u

t
(o

p
s)

 x
 1

00

 Number of processes

Dike

fold-stat
file-stat
fold-create
file-create

(a)

mdtest / AWS - 1 Client

1 5 10

 Number of processes

Ceph

1 5 10

 Number of processes

Gluster

(b)

Fig. 10. The mdtest throughput of 1 client is maximized at 12 processes
in the local cluster (a), and 5 processes in AWS (b). We show represen-
tative measurements for Dike (a), along with Ceph and GlusterFS (b).

microbenchmark running over a parallel filesystem. Each
spawned MPI task iteratively creates, stats and removes a
number of files and folders. At the end of the execution, the
benchmark reports the throughput of different filesystem
operations.

In a preliminary experiment, we created a total of 31,104
files and folders equally divided across the benchmark
tasks. With one tenant over our two testbeds and differ-
ent filesystems we measured the throughput for different
numbers of processes in a single client. We found that the
mdtest throughput is roughly maximized at 12 processes for
the local client and 5 processes for the AWS client. In Fig. 10
we show representative measurements for (a) Dike over the
local cluster along with (b) Ceph and GlusterFS over AWS.
Accordingly, we configure the number of mdtest processes
per client equal to 12 in the local cluster and 5 in AWS for
the rest of the document.

In the MapReduce application workload, we used
Stanford’s Phoenix v2 shared-memory implementation of
Google’s MapReduce. We study the reverse index, which
receives as input a collection of HTML files, and generates as
output the full-text index with links to the files. Our dataset
contains 78,355 files in 14,025 folders and occupies 1.01GB.
We measure the latency of index build broken down across
several metadata operations.

In the Linux Build application workload, we store the
source of the Linux kernel (v3.5.5) in a shared folder of
the filesystem. Then we use soft links to make the code
accessible in private folders of the tenants. We measure the
total time to create the soft links and build the system image.

In our experiments, we treat as main measured metric
the throughput of mdtest, the index build time of MapRe-
duce, and the compilation time of Linux Build. We repeated
the experiments at least 3 times and as many times as
needed (up to 20) to constrain the 95% confidence-interval
half-length of the main metric within 5% of the average
value.

6.2 Experimentation Results
Across the three different workloads, we examine the per-
formance overhead of Dike over Ceph at different num-
bers of clients after a preliminary experimentation with

1

10

100

1k

10k

100k

Create

T
h

ro
u

g
h

p
u

t
(o

p
s)

 30k 120k 300k

 Number of Files

mdtest / Local - 1 Client
File Operations

Ceph Dike

28
3

25
0

1

10

100

1k

10k

100k

Rem
ove

T
h

ro
u

g
h

p
u

t
(o

p
s)

 30k 120k 300k

 Number of Files

mdtest / Local - 1 Client
File Operations

60
9

60
1

1

10

100

1k

10k

100k

Stat

T
h

ro
u

g
h

p
u

t
(o

p
s)

 30k 120k 300k

 Number of Files

mdtest / Local - 1 Client
File Operations

17
21

16
83

1

10

100

1k

10k

100k

Create

T
h

ro
u

g
h

p
u

t
(o

p
s)

 30k 120k 300k

 Number of Files

mdtest / Local - 1 Client
File Operations

33
3

32
1

1

10

100

1k

10k

100k

Rem
ove

T
h

ro
u

g
h

p
u

t
(o

p
s)

 30k 120k 300k

 Number of Files

mdtest / Local - 1 Client
File Operations

23
3

21
6

1

10

100

1k

10k

100k

Stat

T
h

ro
u

g
h

p
u

t
(o

p
s)

 30k 120k 300k

 Number of Files

mdtest / Local - 1 Client
File Operations

88
8

86
7

1

10

100

1k

10k

100k

Create

T
h

ro
u

g
h

p
u

t
(o

p
s)

 30k 120k 300k

 Number of Files

mdtest / Local - 1 Client
File Operations

16
6

15
4

1

10

100

1k

10k

100k

Rem
ove

T
h

ro
u

g
h

p
u

t
(o

p
s)

 30k 120k 300k

 Number of Files

mdtest / Local - 1 Client
File Operations

19
5

24
5

1

10

100

1k

10k

100k

Stat

T
h

ro
u

g
h

p
u

t
(o

p
s)

 30k 120k 300k

 Number of Files

mdtest / Local - 1 Client
File Operations

77
0

75
1

(a)

Create

 30k 120k 300k

 Number of Files

mdtest / Local - 1 Client
Folder Operations

Ceph Dike

53
1

51
6

Rem
ove

 30k 120k 300k

 Number of Files

mdtest / Local - 1 Client
Folder Operations

51
8

47
1

Stat

 30k 120k 300k

 Number of Files

mdtest / Local - 1 Client
Folder Operations

17
43

17
37

Create

 30k 120k 300k

 Number of Files

mdtest / Local - 1 Client
Folder Operations

38
1

34
7

Rem
ove

 30k 120k 300k

 Number of Files

mdtest / Local - 1 Client
Folder Operations

33
2

33
2

Stat

 30k 120k 300k

 Number of Files

mdtest / Local - 1 Client
Folder Operations

10
38

10
18

Create

 30k 120k 300k

 Number of Files

mdtest / Local - 1 Client
Folder Operations

15
0

14
2

Rem
ove

 30k 120k 300k

 Number of Files

mdtest / Local - 1 Client
Folder Operations

21
3

21
8

Stat

 30k 120k 300k

 Number of Files

mdtest / Local - 1 Client
Folder Operations

89
9

87
7

(b)

Fig. 11. Performance of mdtest at increasing number of files across
Ceph and Dike. We use 36 tenants in Dike and 1 client in both systems.

the filesystem size. Then we study the performance and
overhead in systems with up to one thousand of config-
ured tenants or more. Finally, we evaluate the performance
improvement arising from the activation of common per-
missions in Dike.

6.2.1 Scalability

In our first set of experiments, we examine the comparative
performance of Dike over Ceph at an increasing number of
clients across the different benchmarks.

mdtest We start with the mdtest performance (measured
in operations per second, or ops) in the local cluster. Before
examining different numbers of clients, we do a basic exper-
iment about the effect of the filesystem size to the system
throughput in Dike configured with 36 tenants. We con-
sider alternative collections of 30k, 120k and 300k files, and
equally distribute each collection across 10 folders. With 1
client accessing the files of a single tenant in Fig 11a, we find
Dike to reduce the throughput of Ceph by a moderate per-
centage of 0-11.5% across the three operations and actually
increase it by 25.8% in one case (remove/300k). In compari-
son to stat, the reduction is higher in the create and remove
operations, most likely due to the locking contention of the
update activity that they involve. At 30k files, the create
throughput of Dike (250ops) is 11.5% below Ceph (283ops),
unlike the stat throughput of Dike (1,683ops) that is only
2.2% below Ceph (1,721ops). Increasing the files from 30k
to 300k reduces noticeably the measured throughput across
both systems but the relative results remain comparable. We
also examine the performance of folder operations in Fig 11b
to find out that increasing the number of files also reduces
substantially the performance across all the operation types.
Thus, we establish some basic understanding of the system
sensitivity to the workload size.

In Fig 12 we examine different numbers of clients on
an equal number of distinct tenants over the local cluster.
The clients equally divide the creation of 31,104 files, which
are either located in a shared folder (Shared), or equally
distributed across 36 private folders, one per client (Private).
We measure the throughput of file create, remove and stat
across the two folder types. In Fig 12a we consider the oper-
ation throughput of Dike at increasing number of clients up

11

1

10

100

1k

10k

100k

Create

T
h

ro
u

g
h

p
u

t
(o

p
s)

 Private Shared

mdtest / Local
Dike

1 client
12 clients
24 clients
36 clients

1

10

100

1k

10k

100k

Rem
ove

T
h

ro
u

g
h

p
u

t
(o

p
s)

 Private Shared

mdtest / Local
Dike

1

10

100

1k

10k

100k

Stat

T
h

ro
u

g
h

p
u

t
(o

p
s)

 Private Shared

mdtest / Local
Dike

1

10

100

1k

10k

100k

Create

T
h

ro
u

g
h

p
u

t
(o

p
s)

 Private Shared

mdtest / Local
Dike

1

10

100

1k

10k

100k

Rem
ove

T
h

ro
u

g
h

p
u

t
(o

p
s)

 Private Shared

mdtest / Local
Dike

1

10

100

1k

10k

100k

Stat

T
h

ro
u

g
h

p
u

t
(o

p
s)

 Private Shared

mdtest / Local
Dike

(a)

Create

 Private Shared

mdtest / Local - 36 Clients
Ceph vs Dike

Ceph
Dike

12
88

10
22

Rem
ove

 Private Shared

mdtest / Local - 36 Clients
Ceph vs Dike

46
2

37
0

Stat

 Private Shared

mdtest / Local - 36 Clients
Ceph vs Dike

42
69

5
43

28
9

Create

 Private Shared

mdtest / Local - 36 Clients
Ceph vs Dike

44 41

Rem
ove

 Private Shared

mdtest / Local - 36 Clients
Ceph vs Dike

48 44

Stat

 Private Shared

mdtest / Local - 36 Clients
Ceph vs Dike

59
03

49
48

(b)

Fig. 12. Performance of mdtest file operations across different numbers
of clients. We consider files distributed over private or shared folders of
Dike (a) in comparison with the original Ceph (b). Dike uses 36 tenants
to assign a separate tenant per client.

 0

 500

 1000

 1500

 2000

1 12 24 36

In
d

ex
 b

u
ild

 t
im

e
(s

)

Number of clients

MapReduce / Local
Ceph vs Dike - 36 Tenants

Ceph
Dike

(a)

 0.01

 0.1

 1

 10

 100

fold-read

O
p

er
at

io
n

 la
te

n
cy

 (
m

s)

 1 Client 24 Clients 36 Clients

MapReduce / Local
Ceph vs Dike - 36 Tenants

Ceph
Dike

 0.01

 0.1

 1

 10

 100

fold-open

O
p

er
at

io
n

 la
te

n
cy

 (
m

s)

 1 Client 24 Clients 36 Clients

MapReduce / Local
Ceph vs Dike - 36 Tenants

 0.01

 0.1

 1

 10

 100

file-open

O
p

er
at

io
n

 la
te

n
cy

 (
m

s)

 1 Client 24 Clients 36 Clients

MapReduce / Local
Ceph vs Dike - 36 Tenants

 0.01

 0.1

 1

 10

 100

file-stat

O
p

er
at

io
n

 la
te

n
cy

 (
m

s)

 1 Client 24 Clients 36 Clients

MapReduce / Local
Ceph vs Dike - 36 Tenants

 0.01

 0.1

 1

 10

 100

fold-read

O
p

er
at

io
n

 la
te

n
cy

 (
m

s)

 1 Client 24 Clients 36 Clients

MapReduce / Local
Ceph vs Dike - 36 Tenants

 0.01

 0.1

 1

 10

 100

fold-open

O
p

er
at

io
n

 la
te

n
cy

 (
m

s)

 1 Client 24 Clients 36 Clients

MapReduce / Local
Ceph vs Dike - 36 Tenants

 0.01

 0.1

 1

 10

 100

file-open

O
p

er
at

io
n

 la
te

n
cy

 (
m

s)

 1 Client 24 Clients 36 Clients

MapReduce / Local
Ceph vs Dike - 36 Tenants

 0.01

 0.1

 1

 10

 100

file-stat

O
p

er
at

io
n

 la
te

n
cy

 (
m

s)

 1 Client 24 Clients 36 Clients

MapReduce / Local
Ceph vs Dike - 36 Tenants

 0.01

 0.1

 1

 10

 100

fold-read

O
p

er
at

io
n

 la
te

n
cy

 (
m

s)

 1 Client 24 Clients 36 Clients

MapReduce / Local
Ceph vs Dike - 36 Tenants

 0.01

 0.1

 1

 10

 100

fold-open

O
p

er
at

io
n

 la
te

n
cy

 (
m

s)

 1 Client 24 Clients 36 Clients

MapReduce / Local
Ceph vs Dike - 36 Tenants

 0.01

 0.1

 1

 10

 100

file-open

O
p

er
at

io
n

 la
te

n
cy

 (
m

s)

 1 Client 24 Clients 36 Clients

MapReduce / Local
Ceph vs Dike - 36 Tenants

 0.01

 0.1

 1

 10

 100

file-stat

O
p

er
at

io
n

 la
te

n
cy

 (
m

s)

 1 Client 24 Clients 36 Clients

MapReduce / Local
Ceph vs Dike - 36 Tenants

(b)

Fig. 13. Performance comparison of MapReduce over Ceph and Dike
across different number of clients. We configure Dike with 36 tenants
and assign a separate tenant per client.

to 36 (432 processes total). The throughput of stat increases
almost linearly (37.4x) in private folders, but an order of
magnitude less (4.4x) in shared folders. The performance of
create and remove increases much less (e.g., create/private
by 5.6x) or even drops at 36 clients (e.g., remove/shared by
27.3%).

In Fig 12b we compare the performance of Ceph and
Dike at 36 clients under mdtest. In private folders, Dike
improves marginally the stat performance of Ceph by 1.4%,
but reduces the create performance by 20.6% (from 1,288ops
down to 1,022ops). In the shared folder, Dike reduces
the stat performance by 16.2%. Overall, Dike reduces the
throughput of Ceph roughly by 0-21%, because it updates
both the inode and extended attributes to provide mul-
titenancy. Furthermore, folder sharing among the clients
reduces consistently the performance of the private folders
by a factor of up to 29.1x in Ceph and 25.1x in Dike.

MapReduce We subsequently compare the performance
of MapReduce over Ceph and Dike across different numbers
of clients. In Fig 13a we measure the build time of the
reverse index operation over the local cluster. The collection
of indexed files is stored in a shared folder and the created
indices are held in memory. We configure Dike with 36
tenants, and assign a distinct tenant to each client. We vary

 0

 2000

 4000

 6000

 8000

 10000

Ceph
Dike

T
im

e
(s

)

 1 Client 6 Clients 12 Clients

Linux Build / Local
Ceph vs Dike - 12 Tenants

Create
Build

13
70

13
95

 0

 2000

 4000

 6000

 8000

 10000

Ceph
Dike

T
im

e
(s

)

 1 Client 6 Clients 12 Clients

Linux Build / Local
Ceph vs Dike - 12 Tenants

40
53

39
87

 0

 2000

 4000

 6000

 8000

 10000

Ceph
Dike

T
im

e
(s

)

 1 Client 6 Clients 12 Clients

Linux Build / Local
Ceph vs Dike - 12 Tenants

76
90

75
89

(a)

 1

 10

 100

Ceph
Dike

U
ti

liz
at

io
n

 (
%

)

 1 Client 6 Clients 12 Clients

Linux Build / Local
Ceph vs Dike - 12 Tenants

MDS-CPU
OSD-CPU

Data-Disk
Journal-Disk

 1

 10

 100

Ceph
Dike

U
ti

liz
at

io
n

 (
%

)

 1 Client 6 Clients 12 Clients

Linux Build / Local
Ceph vs Dike - 12 Tenants

MDS-CPU
OSD-CPU

Data-Disk
Journal-Disk

 1

 10

 100

Ceph
Dike

U
ti

liz
at

io
n

 (
%

)

 1 Client 6 Clients 12 Clients

Linux Build / Local
Ceph vs Dike - 12 Tenants

MDS-CPU
OSD-CPU

Data-Disk
Journal-Disk

(b)

Fig. 14. (a) Performance and (b) resource utilization of the Linux build
workload between Ceph and Dike across different numbers of clients.
We use Dike with 12 configured tenants. For the OSD case, we depict
the average utilization across the three OSD nodes of the system.

the number of clients between 1 and 36 and notice that the
performance of Dike remains similar to that of Ceph. The
highest overhead of Dike appears with 1 client at 3.8%, in
which case Ceph takes 423.6s to build the index and Dike
takes 439.8s.

In Fig 13b we examine the latency of filesystem metadata
operations at the client under MapReduce. In most cases,
we find the latency measured in Dike to be comparable to
that of Ceph across the different operations and number
of clients. Notable exception is the opendir (fold-open)
that takes 10.5-42.7% more in Dike than Ceph when the
number of clients drops from 36 down to 1. In the case of
readdir (fold-read) the respective overhead of Dike is much
lower in the range 4.9%-10.5%. As already explained in the
implementation, we attribute the Dike overhead to the extra
cost of reading the tenant permissions from the extended
attributes.

Linux Build In Fig. 14 we compare the performance
of the Linux compilation over Ceph and Dike with the
common permissions disabled. In Fig. 14a, we measure
separately the average time to create the soft links and build
the system image. As the number of clients increases from
1 to 12, the overhead of Dike remains relatively low. In
particular, it drops from 4.6% to 1.6% in link creation and
from 0.7% to -8.1% in image build. Indeed, Dike with 12
clients takes 2,145s which is lower than 2,334s in Ceph. We
notice the highest increase in the experiment duration at 1
client, as Dike takes 1,395s (1.8% higher) instead of Ceph
that takes 1,370s. By looking at the resource utilization of
the MDS and the OSDs in Fig. 14b, we observe Ceph with 1
client to utilize 3.5% the CPU and 11.1% the data disk of the
OSDs. Instead, Dike utilizes these two resources 4.1% (19.1%
higher) and 12.7% (14.0% higher), respectively, leading to
slighly longer experiment duration, as pointed out above
for the case of 1 client.

6.2.2 Comparative Multitenancy Overhead

mdtest Next we run up to 32 mdtest clients in the AWS
testbed (1 t1.micro EC2 instance/client). The clients equally
divide the creation of 48,000 files, and each client equally
divides the respective number of files among its processes.
In Dike we alternatively create 1,000 or 5,000 private folders

12

1

10

100

1k

10k

100k

Create

T
h

ro
u

g
h

p
u

t
(o

p
s)

 1 Client 16 Clients 32 Clients

mdtest / AWS
Ceph vs Dike

Ceph
Dike-1k
Dike-5k

1

10

100

1k

10k

100k

Rem
ove

T
h

ro
u

g
h

p
u

t
(o

p
s)

 1 Client 16 Clients 32 Clients

mdtest / AWS
Ceph vs Dike

1

10

100

1k

10k

100k

Stat

T
h

ro
u

g
h

p
u

t
(o

p
s)

 1 Client 16 Clients 32 Clients

mdtest / AWS
Ceph vs Dike

1

10

100

1k

10k

100k

Create

T
h

ro
u

g
h

p
u

t
(o

p
s)

 1 Client 16 Clients 32 Clients

mdtest / AWS
Ceph vs Dike

1

10

100

1k

10k

100k

Rem
ove

T
h

ro
u

g
h

p
u

t
(o

p
s)

 1 Client 16 Clients 32 Clients

mdtest / AWS
Ceph vs Dike

1

10

100

1k

10k

100k

Stat

T
h

ro
u

g
h

p
u

t
(o

p
s)

 1 Client 16 Clients 32 Clients

mdtest / AWS
Ceph vs Dike

1

10

100

1k

10k

100k

Create

T
h

ro
u

g
h

p
u

t
(o

p
s)

 1 Client 16 Clients 32 Clients

mdtest / AWS
Ceph vs Dike

1

10

100

1k

10k

100k

Rem
ove

T
h

ro
u

g
h

p
u

t
(o

p
s)

 1 Client 16 Clients 32 Clients

mdtest / AWS
Ceph vs Dike

1

10

100

1k

10k

100k

Stat

T
h

ro
u

g
h

p
u

t
(o

p
s)

 1 Client 16 Clients 32 Clients

mdtest / AWS
Ceph vs Dike

(a)

Create

 1 Client 16 Clients 32 Clients

mdtest / AWS
GlusterFS vs HekaFS

GlusterFS
HekaFS-1k
HekaFS-5k

Rem
ove

 1 Client 16 Clients 32 Clients

mdtest / AWS
GlusterFS vs HekaFS

Stat

 1 Client 16 Clients 32 Clients

mdtest / AWS
GlusterFS vs HekaFS

Create

 1 Client 16 Clients 32 Clients

mdtest / AWS
GlusterFS vs HekaFS

Rem
ove

 1 Client 16 Clients 32 Clients

mdtest / AWS
GlusterFS vs HekaFS

Stat

 1 Client 16 Clients 32 Clients

mdtest / AWS
GlusterFS vs HekaFS

Create

 1 Client 16 Clients 32 Clients

mdtest / AWS
GlusterFS vs HekaFS

Rem
ove

 1 Client 16 Clients 32 Clients

mdtest / AWS
GlusterFS vs HekaFS

Stat

 1 Client 16 Clients 32 Clients

mdtest / AWS
GlusterFS vs HekaFS

(b)

Fig. 15. Throughput comparison of filesystem operations in mdtest
between Ceph and Dike along with GlusterFS and HekaFS, with the
number of tenants alternatively set equal to 1,000 or 5,000.

-20

 0

 20

 40

 60

 80

 100

Create

O
ve

rh
ea

d
 (

%
)

 File operations Folder operations

mdtest / AWS
32 Clients

HekaFS-1k
HekaFS-5k
Dike-1k
Dike-5k

-20

 0

 20

 40

 60

 80

 100

Rem
ove

O
ve

rh
ea

d
 (

%
)

 File operations Folder operations

mdtest / AWS
32 Clients

-20

 0

 20

 40

 60

 80

 100

Stat

O
ve

rh
ea

d
 (

%
)

 File operations Folder operations

mdtest / AWS
32 Clients

-20

 0

 20

 40

 60

 80

 100

Create

O
ve

rh
ea

d
 (

%
)

 File operations Folder operations

mdtest / AWS
32 Clients

-20

 0

 20

 40

 60

 80

 100

Rem
ove

O
ve

rh
ea

d
 (

%
)

 File operations Folder operations

mdtest / AWS
32 Clients

-20

 0

 20

 40

 60

 80

 100

Stat

O
ve

rh
ea

d
 (

%
)

 File operations Folder operations

mdtest / AWS
32 Clients

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

GlusterFS

HekaFS-100

HekaFS-1k

In
d

ex
 b

u
ild

 t
im

e
(s

)

MapReduce / AWS
1 Client

375

545

656

 0

 100

 200

 300

 400

 500

 600

 700

 800

Ceph

Dike-100

Dike-1k

In
d

ex
 b

u
ild

 t
im

e
(s

)

MapReduce / AWS
1 Client

328 347
395

(b)

Fig. 16. Comparison of relative overheads by Dike over Ceph and
HekaFS over GlusterFS in the filesystem throughput of (a) mdtest with
up to 5,000 tenants and (b) MapReduce with up to 1,000 tenants.

and activate access permissions for a single tenant per folder
to emulate 1,000 (Dike-1k) or 5,000 distinct tenants (Dike-
5k), respectively.

In Fig. 15a we show the total throughput of mdtest file
operations in Ceph and Dike over AWS. Quite reasonably,
we notice a higher number of clients to increase the system
performance, but Dike only adds a limited overhead to
Ceph. At 1 client, Ceph serves the file create at 81ops,
Dike-1k at 78ops and Dike-5K at 80ops. At 32 clients, Dike-
1k only reduces the Ceph throughput by 0-12%, and the
5k configuration adds an extra 2% overhead in Dike with
respect to the original Ceph. In some cases, Dike even
improves the performance of the file operations (up to 19.5%
at 32 clients with remove), most probably due to the reduced
update contention across the private filesystem folders.

GlusterFS is an open-source, distributed filesystem from
RedHat. It supports translator layers for the addition of
extra features. HekaFS is a cloud filesystem implemented
as a set of translators over GlusterFS. In order to isolate the
identity space of different tenants, HekaFS uses a mapping
layer to translate the local user identities of the tenants to
globally-unique identities [4]. HekaFS appears to strictly
store the files of different tenants on distinct private folders,
which makes it unclear whether it currently supports secure
file sharing between tenants [4].

 0

 500

 1000

 1500

 2000

1 10 100

In
d

ex
 b

u
ild

 t
im

e
(s

)

 Tenants
 1 Client 12 Clients 24 Clients 36 Clients

Mapreduce / Local
Dike vs Dike-CP

Dike Dike-CP

 0

 500

 1000

 1500

 2000

1 10 100

In
d

ex
 b

u
ild

 t
im

e
(s

)

 Tenants
 1 Client 12 Clients 24 Clients 36 Clients

Mapreduce / Local
Dike vs Dike-CP

 0

 500

 1000

 1500

 2000

1 10 100

In
d

ex
 b

u
ild

 t
im

e
(s

)

 Tenants
 1 Client 12 Clients 24 Clients 36 Clients

Mapreduce / Local
Dike vs Dike-CP

 0

 500

 1000

 1500

 2000

1 10 100

In
d

ex
 b

u
ild

 t
im

e
(s

)

 Tenants
 1 Client 12 Clients 24 Clients 36 Clients

Mapreduce / Local
Dike vs Dike-CP

(a)

 1

 10

 100

Dike

Dike-CP

U
ti

liz
at

io
n

 (
%

)

 1 Tenant 10 Tenants 100 Tenants

MapReduce / Local
Dike vs Dike-CP - 36 Clients

MDS-CPU
OSD-CPU
Data-Disk
Journal-Disk

 1

 10

 100

Dike

Dike-CP

U
ti

liz
at

io
n

 (
%

)

 1 Tenant 10 Tenants 100 Tenants

MapReduce / Local
Dike vs Dike-CP - 36 Clients

MDS-CPU
OSD-CPU
Data-Disk
Journal-Disk

 1

 10

 100

Dike

Dike-CP

U
ti

liz
at

io
n

 (
%

)

 1 Tenant 10 Tenants 100 Tenants

MapReduce / Local
Dike vs Dike-CP - 36 Clients

MDS-CPU
OSD-CPU
Data-Disk
Journal-Disk

(b)

Fig. 17. (a) Comparative advantage of activating common permissions
in Dike (Dike-CP) at different numbers of tenants and clients with local
MapReduce. (b) Comparative resource utilization across Dike and Dike-
CP in local MapReduce. For the OSD case, we depict the average
utilization across the three OSD nodes.

In Fig. 15b we compare the throughput of mdtest file
operations across GlusterFS and multitenant HekaFS on
AWS. At increasing number of tenants from 1 up to 1k or
5k, performance remains about the same with 1 client and
slightly improves with 16 clients, but substantially drops
with 32 clients. For instance, the stat throughput of 32 clients
drops from 13,818ops in GlusterFS to 7,017ops (49.2%) in
HekaFS-1k, and 2,290ops (83.4%) in HekaFS-5k.

Fig.16a summarizes our comparative results of Dike and
HekaFS at 32 clients. Overall, the performance overhead re-
mains similar across file and folder operations. However, the
overhead of file and folder create reaches 12-16% in Dike-1k
and 14-15% in Dike-5k. Instead, the overhead in both file
and folder stat of HekaFS over GlusterFS approaches 49%
with 1k tenants and 84% with 5k tenants, i.e., nearly up to
two orders of magnitude higher than that of Dike (0-2%).

MapReduce In Fig. 16b we further explore the multi-
tenancy overhead using MapReduce over AWS. We use 1
client over a filesystem configured with 100 and 1k tenants,
respectively. Based on the measured time of index build,
the overhead of Dike over Ceph lies in the range 6-20%,
and that of HekaFS over GlusterFS in 45-75%. We conclude
that HekaFS under either mdtest or MapReduce ends up at
much higher performance overhead in comparison to Dike
with a moderate (a hundred) or large number (a thousand)
of tenants.

6.2.3 File Sharing and Common Permissions

MapReduce In Fig 17a, we measure the performance ad-
vantage of activating common permissions in Dike (Dike-
CP) on the local cluster configured with 1, 10 or 100 tenants.
Each file in Dike maintains separate permissions for each
tenant. On the contrary, the files in Dike-CP adopt the tree
file permissions of their parent folder. If we set the number
of tenants to 1 or 10, then the index build time is comparable
across Dike and Dike-CP. For instance, with 36 clients and
1 tenant, Dike-CP slightly increases the index build time
of Dike by 1.9% (from 1,104s to 1,125s). In fact, the results
become more interesting if we raise the number of tenants
to 100. Dike-CP achieves a substantial reduction of the build
time by 41.4% (from 1,438s to 843s) at 1 client, and by 28.1%
(from 2,029s to 1,458s) at 32 clients.

13

MapReduce / Local
Dike vs Dike-CP

 0.01

 0.1

 1

 10

 100

fold-read
fold-open
file-open
file-stat

O
p

er
at

io
n

 la
te

n
cy

 (
m

s)

 1 10 100
 Tenants

1 Client
Dike Dike-CP

 0.01

 0.1

 1

 10

 100

fold-read
fold-open
file-open
file-stat

O
p

er
at

io
n

 la
te

n
cy

 (
m

s)

 1 10 100
 Tenants

1 Client

 0.01

 0.1

 1

 10

 100

fold-read
fold-open
file-open
file-stat

O
p

er
at

io
n

 la
te

n
cy

 (
m

s)

 1 10 100
 Tenants

1 Client

fold-read
fold-open
file-open
file-stat

 1 10 100
 Tenants

24 Clients

fold-read
fold-open
file-open
file-stat

 1 10 100
 Tenants

24 Clients

fold-read
fold-open
file-open
file-stat

 1 10 100
 Tenants

24 Clients

fold-read
fold-open
file-open
file-stat

 1 10 100
 Tenants

36 Clients

fold-read
fold-open
file-open
file-stat

 1 10 100
 Tenants

36 Clients

fold-read
fold-open
file-open
file-stat

 1 10 100
 Tenants

36 Clients

Fig. 18. Throughput comparison of filesystem operations across Dike
and Dike-CP in local MapReduce.

Each file access in Dike involves the retrieval of a file-
permissions object, which increases the required processing
time in both the MDS and the OSDs along with the disk
I/O at the OSDs. On the contrary, accessing the files of
a folder in Dike-CP can be authorized by retrieving only
once the tree file permissions of the folder. In Fig. 17b we
show details of resource utilization in the MDS and the
(average of) OSDs for Dike and Dike-CP. With 1 tenant, the
most demanded resource in the filesystem is the MDS CPU
with measured utilization at 2.7% in both Dike and Dike-CP.
However, as we increase the tenants to 10 or 100, the data
disk of the OSDs becomes the most demanded resource. The
respective utilization is 3.1% and 34.0% in the case of Dike,
and 3.5% and 10.4% in the case of Dike-CP. Therefore, at 100
tenants, Dike-CP reduces the utilization of the bottleneck
resource by more than a factor of 3, which translates into the
substantially reduced build time observed in the previous
paragraph.

In Fig 18 we explore the latency of individual file opera-
tions across different numbers of tenants in Dike and Dike-
CP. We notice that readdir (fold-read) is highly sensitive to
the number of tenants. As the tenants increase from 1 to 100
at 1 client, the latency of readdir grows 9.7x (from 4.1ms to
40.3ms) in Dike, and 3.2x (from 4.2ms to 13.4ms) in Dike-
CP. Essentially, Dike-CP reduces the latency of readdir by
a factor of 3 in comparison to Dike. However, the latency
across the different operations remains relatively insensitive
to the different numbers of clients that we tried.

Linux build Additionally, in Fig.19 we examine the
Linux Build benchmark with 1 up to 12 clients and dedi-
cated tenant per client with common permissions in Dike
activated or not. In the case of 1 tenant and 1 client, Dike-
CP slightly increases by 7.4% the total benchmark time of
Dike (to 1,491s from 1,389s). At the other extreme with
100 tenants and 12 clients, Dike-CP only achieves a limited
benefit of 2.9% with respect to Dike, as Dike-CP reduces
the experiment time from 7,896s to 7,664s. These results can
be justified by the fact that the multitenancy support pro-
vided by Dike in Linux Build already incurs low metadata-
management overhead (2% over Ceph).

Overall, we conclude that Dike adds multitenancy sup-
port to Ceph at limited performance overhead below 21%.
Instead, the overhead of HekaFS over GlusterFS is higher,
up to 84% in some cases.

0

2k

4k

6k

8k

1 10 100

T
im

e
(s

)

 Tenants
 1 Client 6 Clients 12 Clients

Linux Build / Local
Dike vs Dike-CP

Dike

0

2k

4k

6k

8k

1 10 100

T
im

e
(s

)

 Tenants
 1 Client 6 Clients 12 Clients

Linux Build / Local
Dike vs Dike-CP

Dike

13
89

15
09

15
80

0

2k

4k

6k

8k

T
im

e
(s

)

 Tenants
 1 Client 6 Clients 12 Clients

Linux Build / Local
Dike vs Dike-CP

Dike-CP

0

2k

4k

6k

8k

T
im

e
(s

)

 Tenants
 1 Client 6 Clients 12 Clients

Linux Build / Local
Dike vs Dike-CP

Dike-CP

14
91

15
08

16
02

0

2k

4k

6k

8k

1 10 100

T
im

e
(s

)

 Tenants
 1 Client 6 Clients 12 Clients

Linux Build / Local
Dike vs Dike-CP

0

2k

4k

6k

8k

1 10 100

T
im

e
(s

)

 Tenants
 1 Client 6 Clients 12 Clients

Linux Build / Local
Dike vs Dike-CP

39
84

39
57

40
38

0

2k

4k

6k

8k

T
im

e
(s

)

 Tenants
 1 Client 6 Clients 12 Clients

Linux Build / Local
Dike vs Dike-CP

Create
Build

0

2k

4k

6k

8k

T
im

e
(s

)

 Tenants
 1 Client 6 Clients 12 Clients

Linux Build / Local
Dike vs Dike-CP

0

2k

4k

6k

8k

T
im

e
(s

)

 Tenants
 1 Client 6 Clients 12 Clients

Linux Build / Local
Dike vs Dike-CP

40
29

39
48

40
38

0

2k

4k

6k

8k

1 10 100

T
im

e
(s

)

 Tenants
 1 Client 6 Clients 12 Clients

Linux Build / Local
Dike vs Dike-CP

0

2k

4k

6k

8k

1 10 100

T
im

e
(s

)

 Tenants
 1 Client 6 Clients 12 Clients

Linux Build / Local
Dike vs Dike-CP

75
80

76
75

78
96

0

2k

4k

6k

8k

T
im

e
(s

)

 Tenants
 1 Client 6 Clients 12 Clients

Linux Build / Local
Dike vs Dike-CP

0

2k

4k

6k

8k

T
im

e
(s

)

 Tenants
 1 Client 6 Clients 12 Clients

Linux Build / Local
Dike vs Dike-CP

75
50

75
96

76
65

Fig. 19. Limited comparative advantage of Dike-CP over Dike in Linux
build, running over the local cluster with the number of configured
tenants and clients as specified at the x axis.

7 RELATED WORK

We summarize representative related research in the recent
and older published literature about security in distributed
filesystems, virtualization, and cloud storage with respect to
our present work.

Distributed Filesystems All the principals of a dis-
tributed system are often registered into a central directory
(e.g., Kerberos [36]). Secure data transfer between clients
and storage through an object-based interface is addressed
in the Network-Attached Secure Disk model [42]. The Self-
certifying File System prefetches and caches remote user
and group definitions to flexibly support file sharing across
administrative domains [35]. Plutus applies cryptographic
storage to support secure file sharing over an untrusted
server [43]. It aggregates into filegroups the files with
identical sharing attributes, and lazily revokes readers by
deferring the re-encryption of files until their update. In
trust management, a credential binds the keys of principals
to the authorization to perform certain tasks [6]. The users
from different institutions are mapped to an authoritative
list of identifiers in order to maintain uniform ownership
and permission metadata over Lustre [44]. Hypergroup is
an authorization construct that we previously introduced
for the scalable federation of filesystems in grid environ-
ments [45].

In object-based filesystems, an authenticated principal
obtains a capability from the metadata service to access an
object server [8]. Secure capabilities based on public-key
cryptography were previously shown to achieve scalable
filesystem authorization [40]. The extended capability of
the Maat protocol securely authorizes I/O for any num-
ber of principals or files at a fixed size through Merkle
hash trees [27]. IDEAS applies inheritance for scalability in
role-based access control [46]. Secure protocols have been
proposed to enforce authentication, integrity and confiden-
tiality at the data traffic of the Google File System [47].
However, the above research does not directly address the
multitenancy of consolidated cloud storage.

Virtualization Multitenancy isolation without sharing
support was previously achieved in the filesystem by either
running separate virtual machines per tenant, or shield-
ing the filesystem processes of different tenants [48]. File-
based storage virtualization is enabled by Ventana through

14

versioning and access-control lists (ACLs) [2]. Server file
ACLs have system-wide effect, while guest file ACLs are
controlled by the guests. A shared proxy server at the
host provides file access to local guests from networked
object servers. Ventana serves multiple virtual machines, but
without tenant isolation.

VirtFS uses a network protocol to connect a host-based
fileserver to multiple local guests without isolating their
respective principals [3]. The system stores the guest cre-
dentials either directly on the file ACLs or indirectly as file
extended attributes. The scalability of Ventana and VirtFS
is limited by the centralized NFS-like server running at the
host. Instead we advocate the networked access of a scalable
distributed filesystem (e.g., Ceph) directly by the guests.

The Manila File Shares Service is an OpenStack project
under development for coordinated access to shared or
distributed filesystems in cloud infrastructures [12]. The
architecture securely connects guests to a pluggable storage
backend through a logical private network, a hypervisor-
based paravirtual filesystem, or a storage gateway at the
host. Dike is complementary by adding multitenancy sup-
port to Ceph for natively isolating the different tenants at
the storage backend.

Bethencourt et al. investigated the realization of com-
plex access control on encrypted data with the encrypting
party responsible to determine the policy through access at-
tributes (ciphertext-policy attribute-based encryption) [49].
Instead, we focus on the native multitenancy support by the
filesystem.

Pustchi and Sandhu introduced the multi-tenant
attribute-based access control model (MT-ABAC) and con-
sidered different types of attribute assignment between the
trustor and trustee tenant [29]. Ngo et al. introduce del-
egations and constraints for MT-ABAC over a single and
multiple providers [50]. Our work is complementary to the
above studies because we introduce entity definitions and
protocol specifications for a cloud filesystem, and develop
a system prototype for the comprehensive experimental
evaluation of the multitenant access-control scalability in
data storage.

Cloud Storage Different tenants securely coexist in
HekaFS [4]. A tenant assigns identities to local principals,
and translates the pair of tenant and principal identifier to
a unique system-wide identifier through hierarchical dele-
gation. However, HekaFS complicates sharing and applies
global-to-local identity mapping that was previously criti-
cized as cause for limited scalability [34]. We experimentally
measure the overhead resulting from the multitenancy sup-
port added by HekaFS over GlusterFS.

Existing cloud environments primarily apply storage
consolidation at the block level. Guests access virtual disk
images either directly as volumes of a storage-area network
(SAN) or indirectly as files of network-attached storage
(NAS) mounted by the host [51]. The S4 framework extends
Amazon’s S3 cloud storage to support access delegation
over objects of different principals via hierarchical pol-
icy views [52]. CloudViews targets flexible, protected, and
performance-isolated data sharing. It relies on signed view
as a self-certifying, database-style abstraction [53].

Our support for fine granularity of access control by
the provider distinctly differentiates our work from existing

systems. In particular, the AWS Elastic File System [54]
only allows cross-tenant access at the granularity of entire
filesystems (e.g., mount to a client) rather than files and
individual users.

The abstraction of Secure Storage Regions enables the
limited storage resources of a Trusted Platform Module to
be multiplexed into persistent storage [55]. HAIL combines
error-correction redundancy with integrity protection and
applies MAC aggregation over server responses to achieve
high availability and integrity over distributed cloud stor-
age [56]. CloudProof allows customers of untrusted cloud
storage to securely detect violations of integrity through
public-key signatures and data encryption [57].

Secure Logical Isolation for Multi-tenancy (SLIM) has
been proposed to address end-to-end tenant isolation in
cloud storage. It relies on intermediate software layers (e.g.,
gateway, gatekeeper, guard) to separate privileges in infor-
mation access and processing by different cloud tenants [58].

The data-protection-as-a-service architecture introduces
the secure data capsule as an encrypted data unit pack-
aged with security policy; the execution of applications is
confined within mutually-isolated secure execution environ-
ments [11]. Excalibur introduces the policy-sealed data as a
trusted computing abstraction for data security [59]. Shroud
leverages oblivious RAM algorithms to hide access patterns
in the datacenter [60]. We also target secure storage in the
datacenter, but with native multitenancy support at the file
level through the access-control metadata of object-based
fileservers.

8 DISCUSSION

In current cloud infrastructures, a shared filesystem typi-
cally stores disk images or file shares with access restricted
to a single tenant without native sharing support. For
instance, network-level isolation is commonly applied in
the form of a Virtual Private Cloud based on encrypted
communication channels or VLAN settings [30]. The file
access control is fully enforced by the tenant, and security
violations from vulnerable configurations compromise the
resources of the tenant.

The provider neither enforces the access control of in-
dividual users, nor directly supports the storage sharing
among the users of different tenants. The infrastructure pri-
marily manages administrative entities, but leaves the vir-
tual machines of the tenant responsible to control the access
rights of individual users over local or networked resources.
Consequently, the tenant administrators are burdened with
the task of deploying traditional directory services to both
specify and enforce user access rights, while storage sharing
remains inflexible and potentially error-prone.

By moving the enforcement of access control from the
virtual machine to the shared filesystem, we essentially
strengthen the protection of confidentiality and integrity in
the stored data over a shared consolidated environment. An
individual access is permitted if it identifies securely the
identities of the requesting tenant and end user according
to the policy specification that has been previously config-
ured securely into the underlying filesystem. Our prototype
implementation and experimental results demonstrate the

15

feasibility of the Dike authorization architecture with low
overhead at up to thousands of tenants.

As the cloud ecosystem is increasingly populated with
lightweight virtual machines, such as containers or library
operating systems, we anticipate that the infrastructure will
need to more actively participate in the enforcement of
secure access control [17], [18]. Possible benefits from this
transition include: (i) reduced amount and complexity of
guest software (application or system), (ii) less sensitivity to
tenant software development or configuration bugs, and (iii)
lower tenant administrative overhead for service deploy-
ment or management. Accordingly, the services operated by
the tenant will need to focus more on application-specific
functionality and be able to outsource to the provider the
basic task of secure data access or sharing by one or multiple
users in the same or a different tenant.

9 CONCLUSIONS AND FUTURE WORK

We consider the security requirements of scalable filesys-
tems used by virtualization environments. Then we intro-
duce the Dike system design including secure protocols to
natively support multitenant access control. With a pro-
totype implementation of Dike over a production-grade
filesystem (Ceph) we experimentally demonstrate a limited
multitenancy overhead below 21% in configurations with
several thousand tenants. Our plans for future work include
integration of Dike into a trusted virtualization platform
in the datacenter and further experimentation with I/O-
intensive applications at large scale over different object-
based filesystems. We also plan to consider weaker trust
assumptions as the cloud use cases expand and the resulting
multitenancy environment becomes more complex. Finally,
we intend to study filesystem multitenancy over multiple
(possibly federated) clouds.

ACKNOWLEDGMENTS

The authors are thankful to the anonymous review-
ers, whose constructive comments helped improve the
manuscript. Accessing the Amazon Web Services through
credit from an “AWS in Education Research Grant” award
is gratefully acknowledged.

REFERENCES

[1] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Ban-
non, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala,
J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart,
and A. Vahdat, “Jupiter rising: A decade of clos topologies and
centralized control in Google’s datacenter network,” in ACM
SIGCOMM Conf., London, United Kingdom, Aug. 2015, pp. 183–
197.

[2] B. Pfaff, T. Garfinkel, and M. Rosenblum, “Virtualization Aware
File Systems: Getting Beyond the Limitations of Virtual Disks,”
in USENIX Symp. on Networked Systems Design and Implementation,
San Jose, CA, 2006, pp. 353–366.

[3] V. Jujjuri, E. V. Hensbergen, and A. Liguori, “VirtFS: Virtualization
aware File System pass-through,” in Ottawa Linux Symp., 2010.

[4] J. Darcy, “Building a cloud file system,” USENIX; login:, vol. 36,
no. 3, pp. 14–21, Jun. 2011.

[5] E. Wobber, M. Abadi, M. Burrows, and B. Lampson, “Authenti-
cation in the Taos operating system,” ACM Trans. Comput. Syst.,
vol. 12, no. 1, pp. 3–32, Feb. 1994.

[6] S. Miltchev, V. Prevelakis, S. Ioannidis, J. Ioannidis, A. D.
Keromytis, and J. M. Smith, “Secure and flexible global file shar-
ing,” in USENIX Annual Technical Conf., Freenix Track, San Antonio,
TX, Jun. 2003, pp. 168–178.

[7] J. G. Steiner, C. Neuman, and J. I. Schiller, “Kerberos: An authenti-
cation service for open network systems,” in USENIX Winter Conf.,
Dallas, Texas, Jan. 1988, pp. 191–202.

[8] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn, “Ceph: A Scalable, High-Performance Distributed
File System,” in USENIX Symp. on Operating Systems Design and
Implementation, Seattle, WA, Nov. 2006, pp. 307–320.

[9] G. Kappes, A. Hatzieleftheriou, and S. V. Anastasiadis,
“Virtualization-aware access control for multitenant filesystems,”
in IEEE Intl Conf. on Massive Storage Systems and Technology, Santa
Clara, CA, Jun. 2014.

[10] D. T. Meyer, J. Wires, N. C. Hutchinson, and A. Warfield, “Names-
pace Management in Virtual Desktops,” USENIX; login:, vol. 36,
no. 1, pp. 6–11, Feb. 2011.

[11] D. Song, E. Shi, I. Fischer, and U. Shankar, “Cloud data protection
for the masses,” Computer, vol. 45, no. 1, pp. 39–45, Jan. 2012.

[12] https://wiki.openstack.org/wiki/Manila.
[13] http://docs.openstack.org/developer/keystone/.
[14] https://aws.amazon.com/documentation/iam/.
[15] D. Muthukumaran, D. O’Keeffe, C. Priebe, D. Eyers, B. Shand,

and P. Pietzuch, “FlowWatcher: defending against data disclosure
vulnerabilities in web applications,” in ACM Conf. on Computer and
Communications Security, Denver, CO, Oct. 1995, pp. 603–615.

[16] M. Mihailescu, G. Soundararajan, and C. Amza, “Mixapart: De-
coupled analytics for shared storage systems,” in USENIX Conf.
on File and Storage Technologies, San Jose, CA, Feb. 2013, pp. 133–
146.

[17] E. Reshetova, J. Karhunen, T. Nyman, and N. Asokan, “Security
of OS-level virtualization technologies,” in Nordic Conf. on Secure
IT Systems, Tromsø, Norway, Oct. 2014, pp. 77–93, Springer LNCS
8788.

[18] A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire,
D. Sheets, D. Scott, R. Mortier, A. Chaudhry, B. Singh, J. Ludlam,
J. Crowcroft, and I. Leslie, “Jitsu: just-in-time summoning of
unikernels,” in USENIX Symp. on Networked Systems Design and
Implementation, Oakland, CA, May 2015, pp. 559–573.

[19] C. Chen, H. Raj, S. Saroiu, and A. Wolman, “cTPM: a cloud
TPM for cross-device trusted applications,” in USENIX Symp. on
Networked Systems Design and Implementation, Seattle, WA, Apr.
2014, pp. 187–201.

[20] J. Darcy, “HekaFS,” http://hekafs.org.
[21] https://github.com/kozyraki/phoenix.
[22] M. L. Badger, T. Grance, R. Patt-Corner, and J. M. Voas, “Cloud

computing synopsis and recommendations,” National Institute of
Standards and Technology, Tech. Rep. NIST SP - 800-146, May
2012.

[23] W. Arthur and D. Challener, A Practical Guide to TPM 2.0 Using the
Trusted Platform Module in the New Age of Security. Apress, Jan.
2015.

[24] S. Berger, R. Cáceres, K. A. Goldman, R. Perez, R. Sailer, and
L. van Doorn, “vTPM: virtualizing the trusted platform module,”
in USENIX Security Symp., Vancouver, Canada, Jul. 2006, pp. 305–
320.

[25] B. Parno, J. M. McCune, and A. Perrig, “Bootstrapping Trust in
Commodity Computers,” in IEEE Symp. on Security and Privacy,
May 2010, pp. 414–429.

[26] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards trusted
cloud computing,” in USENIX Workshop on Hot Topics in Cloud
Computing, San Diego, California, Jun. 2009.

[27] A. W. Leung, E. L. Miller, and S. Jones, “Scalable Security for Petas-
cale Parallel File Systems,” in ACM/IEEE Conf. Supercomputing,
Nov. 2007, pp. 16:1–16:12.

[28] Y. Li, N. S. Dhotre, Y. Ohara, T. M. Kroeger, E. L. Miller, and D. D. E.
Long, “Horus: Fine-grained encryption-based security for large-
scale storage,” in USENIX Conf. on File and Storage Technologies,
San Jose, CA, Feb. 2013, pp. 147–160.

[29] N. Pustchi and R. Sandhu, “MT-ABAC: a multi-tenant attribute-
based access control model with tenant trust,” in Intl Conf. on
Network and System Security, New York, NY, Nov. 2015, Springer
LNCS 9408.

[30] R. Yeluri and E. Castro-Leon, Building the Infrastructure for Cloud
Security A Solutions View. Apress, Mar. 2014.

16

[31] J. Mace, P. Bodik, R. Fonseca, and M. Musuvathi, “Retro: targeted
resource management in multi-tenant distributed systems,” in
USENIX Symp. on Networked Systems Design and Implementation,
Oakland, CA, May 2015, pp. 589–603.

[32] E. Pattuk, M. Kantarcioglu, Z. Lin, and H. Ulusoy, “Preventing
cryptographic key leakage in cloud virtual machines,” in USENIX
Security Symp., San Diego, CA, Aug. 2014, pp. 703–718.

[33] A. Jøsan, M. A. Zomai, and S. Suriadi, “Usability and privacy in
identity management architectures,” in Australasian Information Se-
curity Workshop: Privacy Enhancing Technologies, Ballarat, Australia,
Jan. 2007, pp. 143–152.

[34] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’ Agnello, A. Frohner,
K. Lorentey, and F. Spataro, “From gridmap-file to VOMS: man-
aging authorization in a grid environment,” Future Generation
Computer Systems (Elsevier), vol. 21, pp. 549–558, 2005.

[35] M. Kaminsky, G. Savvides, D. Mazières, and M. F. Kaashoek,
“Decentralized user authenication in a global file system,” in ACM
Symp. Operating Systems Principles, Bolton Landing, NY, Oct. 2003,
pp. 60–73.

[36] B. C. Neuman and T. Ts’o, “Kerberos: An authentication service
for computer networks,” IEEE Communications Magazine, vol. 32,
no. 9, pp. 33–38, Sep. 1994.

[37] D. K. Smetters and N. Good, “How users use access control,” in
Symp. on Usable Privacy and Security, Mountain View, CA, Jul. 2009.

[38] S. Bouchenak, G. Chockler, H. Chockler, G. Gheorghe, N. Santos,
and A. Shraer, “Verifying cloud services: Present and future,”
SIGOPS Oper. Syst. Rev., vol. 47, no. 2, pp. 6–19, Jul. 2013.

[39] A. Juels and A. Oprea, “New Approaches to Security and Avail-
ability for Cloud Data,” Communications of the ACM, vol. 56, no. 2,
pp. 64–73, Feb. 2013.

[40] C. Olson and E. L. Miller, “Secure capabilities for a petabyte-scale
object-based distributed file system,” in ACM Workshop on Storage
Security and Survivability, Fairfax, VA, Nov. 2005, pp. 64–73.

[41] http://sourceforge.net/projects/mdtest/.
[42] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang, E. M. Feinberg,

H. Gobioff, C. Lee, B. Ozceri, E. Riedel, D. Rochberg, and J. Ze-
lenka, “File server scaling with network-attached secure disks,” in
ACM SIGMETRICS Conf., Seattle, WA, 1997, pp. 272–284.

[43] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu,
“Plutus: Scalable secure file sharing on untrusted storage,” in
USENIX Conf. on File and Storage Technologies, San Francisco, CA,
2003, pp. 29–42.

[44] J. Walgenbach, S. C. Simms, J. P. Miller, and K. Westneat, “Enabling
Lustre WAN for Production Use on the TeraGrid: A Lightweight
UID Mapping Scheme,” in TeraGrid Conf., Pittsburgh, PA, Aug.
2010.

[45] G. Margaritis, A. Hatzieleftheriou, and S. V. Anastasiadis,
“Nepheli: Scalable access control for federated file services,” J. Grid
Comp., vol. 11, no. 1, pp. 83–102, Mar. 2013.

[46] Z. Niu, K. Zhou, H. Jiang, D. Feng, and T. Yang, “IDEAS:
an identity-based security architecture for large-scale and high-
performance storage systems,” University of Nebraska-Lincoln,
Tech. Rep., Nov. 2008, tR-UNL-CSE-2008-0013.

[47] J. Kelley, R. Tamassia, and N. Triandopoulos, “Hardening access
control and data protection in GFS-like file systems,” in ESORICS
Symp., Pisa, Italy, Sep. 2012, pp. 19–36, Springer LNCS 7459.

[48] A. Kurmus, M. Gupta, R. Pletka, C. Cachin, and R. Haas, “A
Comparison of Secure Multi-tenancy Architectures for Filesystem
Storage Clouds,” in ACM/IFIP/USENIX Intl Middleware Conf., Lis-
boa, Portugal, Dec. 2011, pp. 460–479.

[49] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in IEEE Symp. on Security and Privacy,
Berkeley, CA, May 2007, pp. 321–334.

[50] C. Ngo, Y. Demchenko, and C. de Laat, “Multi-tenant attribute-
based access control for cloud infrastructure services,” Journal of
Information Security and Applications, vol. 27-28, pp. 65–84, Apr-
May 2016.

[51] D. Hilderbrand, A. Povzner, R. Tewari, and V. Tarasov, “Revisiting
the storage stack in virtualized nas environments,” in USENIX
Workshop on I/O Virtualization, Portland, OR, Jun. 2011.

[52] N. H. Walfield, P. T. Stanton, J. L. Griffin, and R. Burns, “Practical
protection for personal storage in the cloud,” in EuroSec Security
Workshop, Paris, France, Apr. 2010, pp. 8–14.

[53] R. Geambasu, S. D. Gribble, and H. M. Levy, “CloudViews: com-
munal data sharing in public clouds,” in USENIX HotCloud, San
Diego, CA, Jun. 2009.

[54] https://aws.amazon.com/efs/.

[55] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh,
D. Williams, and F. B. Schneider, “Logical Attestation: an autho-
rization architecture for trustworthy computing,” in ACM Symp.
on Operating Systems Principles, Cascais, Portugal, Oct. 2011, pp.
249–264.

[56] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: a high-availability
and integrity layer for cloud storage,” in ACM Conf. on Computer
and Communications Security, Chicago, IL, Nov. 2009, pp. 187–198.

[57] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and L. Zhuang,
“Enabling Security in Cloud Storage SLAs with CloudProof,” in
USENIX Annual Technical Conf., Portland, OR, Jun. 2011, pp. 355–
368.

[58] M. Factor, D. Hadas, A. Hamama, N. Har’el, E. K. Kolodner,
A. Kurmus, A. Shulman-Peleg, and A. Sornioti, “Secure logical
isolation for multi-tenancy in cloud storage,” in IEEE Intl. Conf.
Massive Storage Systems and Technology, Long Beach, CA, May 2013.

[59] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu, “Policy-
Sealed Data: A New Abstraction for Building Trusted Cloud
Services,” in USENIX Security Symp., Bellevue, WA, Aug. 2012,
pp. 175–188.

[60] J. R. Lorch, B. Parno, J. Mickens, M. Raykova, and J. Schiffman,
“Shroud: ensuring access to large-scale data in the data center,” in
USENIX Conf. on File and Storage Technologies, San Jose, CA, Feb.
2013, pp. 199–213.

Giorgos Kappes is currently Doctoral Candi-
date at the Department of Computer Science
and Engineering, University of Ioannina, Greece.
Previously, he received MSc (2013) and BSc
(2011) degrees from the above department. His
research interests include operating systems,
data storage and systems security.

Andromachi Hatzieleftheriou is currently Post-
doctoral Researcher at the Systems and Net-
working Group, Microsoft Research, Cambridge,
UK. She received PhD (2015), MSc (2009) and
BSc (2007) degrees from the Department of
Computer Science and Engineering, University
of Ioannina, Greece. Her research interests in-
clude the design and implementation of reliable
local and distributed storage systems.

Stergios V. Anastasiadis is Associate Profes-
sor at the Department of Computer Science and
Engineering, University of Ioannina, Greece. He
has held visiting positions at the Computer Lab-
oratory, University of Cambridge, UK (Visiting
Researcher, 2015-2016), School of Computer
and Communication Sciences, École Polytech-
nique Fédérale de Lausanne, Switzerland (Visit-
ing Professor, 2009-2010), Department of Com-
puter Science, Duke University, USA (Visiting
Assistant Professor, 2001-2003), and HP Labs,

HP, USA (Research intern, 1998). He received MSc (1996) and PhD
(2001) degrees in Computer Science from the University of Toronto,
Canada. His research interests include operating systems and dis-
tributed systems with focus on several aspects of data storage including
reliability and security.

