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Abstract

In the present paper we explore storage manage-
ment issues in proxy servers for distributed file sys-
tems. We organize the requested data at the disks of
the proxy server using locality-aware approaches. Ad-
ditionally, we introduce improvements in the map-
ping mechanism from remote to local data and con-
sider cost-aware replacement methods. In a prototype
implementation that we developed, we experimentally
compare alternative distributed file systems as com-
ponents of the proxy servers. Through extensive mea-
surements, we demonstrate throughput improvements
at the proxy server up to 80% in comparison to the
disk-based cache of a commonly used distributed file
system.

1. Introduction

Current trends in business and research col-
laboration encourage secure data sharing over
wide-area networks with minimal interven-
tion from the end user. Indeed, the requirement
from the users to replicate datasets close to com-
putation resources through explicit file trans-
fers bears significant replica bookkeeping overhead
to the user and only makes data usable after an en-
tire file has been fully replicated locally. There-
fore, it would be preferable to have a caching proxy
to automatically replicate datasets and hide trans-
fer delays during the repetitive use of data. The de-
sign of caching proxies for distributed filesystems
is mainly attracting research interest in the direc-
tion of getting existing filesystems inter-operable
with local file systems for persistent caching pur-
poses. Here we point out the need for efficient stor-
age management in caching proxies so that cache
accesses from the local disk of the proxy have per-
formance comparable to or better than direct disk
accesses from the local file system.

Caching proxies behind web servers have already
been broadly used for over a decade in content dis-
tribution networks. Originally, copies of web pages

requested by users were replicated on proxy servers
close to the web browsers over traditional local
file systems. However, related experimentation in
published literature demonstrated several perfor-
mance deficiencies related to metadata management
of multiple small files, frequent creation and dele-
tion of files, excessive disk head movement from
poor clustering of jointly used data or access over-
heads from multiple small writes. Subsequently, cus-
tomized file systems emerged that complementarily
addressed the above issues through special internal
architectures and new access interfaces.

On the other hand, most distributed filesystems
were originally designed for serving the storage
needs of users within the same organization at a sin-
gle geographical site. The assumed use of a local-
area network limited client-side caching to main
memory and made unnecessary the corresponding
disk-based caching. One notable exception is the
Andrew File System and its descendants that pro-
vide the capability to temporarily store data at the
local file system of the client machine for improved
scalability and availability in distributed environ-
ments [1].

However, Andrew assumes that the client ma-
chines from individual users are powerful enough to
relieve centralized servers from computations. This
is not the case when building caching proxies for
data sharing among large numbers of clients within
an organization. Andrew replicates remote data in
chunks of a configurable fixed size. Initially, it cre-
ates a large number of individual local files at the
client and subsequently uses each of them to store
an individual chunk requested from the server. An-
drew has been widely successful for over two decades
in general file system use. However, in modern sci-
entific and business environments it is common to
have numerous small files or enormously large ones.
Then, the approach of having a separate local file
per chunk might not be the best possible in terms
of data access or metadata management efficiency.

The dominant organization in recent published
literature is to map each remote file to a local file
in the caching proxy [4, 16]. On the contrary, we



claim that apart from offering a consistent view of
the data as they appear at the origin server, the
caching proxy should be free to manage its local
data in whatever way serves its design objectives
better. Thus, the main contributions of the present
paper include the following:

• Efficient data clustering techniques for disk-
based proxy caches.

• Metadata organization methods for faster map-
ping of remote data to the local cache.

• An approach for data replacement with consid-
eration of the distance of the origin server.

• Experimental comparison of alternative dis-
tributed file systems as components of a proxy
server.

We organize the present paper across six sec-
tions. In Section 2 we present basic design issues
that emerge in proxy servers, while in Section 3
we describe the architecture and the implementa-
tion of Hades. In Section 4 we evaluate our proto-
type across a microbenchmark and an actual appli-
cation. Finally, in Section 5 we compare our work
with previous related research and in Section 6 we
outline our conclusions and future work.

2. Background

Arguably, caching of file system data on persis-
tent storage can significantly reduce the operation
cost of distributed file systems over wide-area net-
works for the following reasons:

• The cost of purchasing and managing data stor-
age over a time period is orders of magnitude
less than the cost of leasing network bandwidth
with comparable transfer capacity [19].

• Sharing physical storage resources across mul-
tiple clients additionally reduces the network
bandwidth requirements.

• Bursty requirements from a single client can
more easily be satisfied from multiple storage
devices accessible from the local network rather
than the remote origin server.

Nevertheless, intermediate layers in the path from
the origin server to the client may have adverse ef-
fect to the perceived throughput and latency as a
result of introduced performance bottlenecks and
reduced parallelism in the data transfers (Figure
1). In the present section we examine several re-
source management issues that may arise when de-
signing proxy servers for file systems and some de-

Figure 1. The basic architecture of a proxy
server in a distributed file system.

sign choices that we faced in our proposed architec-
ture.

2.1. Storage Allocation

The development of cost-effective systems re-
quires the placement of cached data on hard disks
rather than the main memory of the proxy server.
Over time, system designers have developed several
different techniques to effectively allocate the disk
storage space of the cache.

Early systems copied entire files from the file
server to the client. This approach was problematic
because it incurred high transfer latency and large
resource requirements at the client [14]. In later ap-
proaches, the designers adopted partial caching ap-
proaches. One possible solution manages the remote
files in fixed-size chunks that it copies and stores
onto corresponding individual local files at the client
[14]. In more recent prototypes, the system dynam-
ically replicates the directory and file naming struc-
ture from the origin server to the cache. It also
transfers the file contents on demand in pages of
configurable size [5, 16]. Locally, the system uses a
typical file system or a raw disk partition to tem-
porarily store the data of the cache.

A somewhat similar storage allocation problem
showed up in web proxy servers. Storage locality
concerns can be handled by grouping files and meta-
data into clusters stored on consecutive blocks of
disk. The clustering is based on the temporal local-
ity of the access requests. Additionally, the proxy
server can treat large files specially and transfer
them directly to the disk bypassing the memory
cache [15]. In order to reduce management over-
heads for small files, the system may group the files
by size and store them in a buddy organization.
Thus, it eliminates file space fragmentation and re-
duces considerably the overhead for file creations
and deletions. Aggregation of the written data in
memory and subsequent appending to disk can pro-



vide additional write throughput improvement [7].
Additionally, it is possible to dynamically reorga-

nize the layout of the data on the disk to match the
received access pattern. In typical file systems, pre-
vious research has examined to exchange the data
across different disk locations in order to minimize
the distance of consecutive requests in previously
collected statistics [8, 18]. In Hades, we investigate
the placement of incoming data into consecutive lo-
cations grouped by the identifier of the remote file to
which the data corresponds or the requesting user.
We leave for future work the study of other group-
ing criteria such as the identifier of the origin server.

2.2. Consistency

Operation performance considerations of dis-
tributed file systems typically lead to weak consis-
tency models that allow local data caching at the
client without support for strict distributed cache
coherence. This means that the system demon-
strates undefined behavior with concurrent write
sharing in the absence of locking. For exam-
ple, in the close-to-open consistency used in
NFSv3, the client blocks on the close call un-
til all data is stably stored on the server. On
a subsequent file open, the client uses an at-
tribute check to validate the cached data and
determine if it will keep it [12].

As an optimization, NFSv4 may delegate
open/close and locking operations to the client
to eliminate periodic cache consistency checks
with the server. The delegation is associated with
a lease that expires after a time period. Alter-
natively the server explicitly revokes the delega-
tion with a preregistered callback [13]. Callbacks
were earlier introduced in Andrew to avoid fre-
quent cache validation checks of the client with
the server [14]. In a different approach used by
CIFS, the server may grant a temporary exclu-
sive lock to a client that opens a file not cur-
rently accessed by another application. The
server breaks the lock when another client at-
tempts to open the file [2].

2.3. File replacement

Recent page replacement policies in local storage
hierarchies are able to simultaneously take into con-
sideration multiple access features such frequency
and recency in order to maximize the hit ratio across
different workloads. Similarly, in the context of web
proxies, the most successful policies seamlessly com-
bine recency with file size, popularity or fetching la-

tency [3,6]. Although early work demonstrated lim-
ited data sharing across different clients [10], recent
studies related to grid environments show signifi-
cant benefits from caching when measuring the ac-
cess latency rather than the hit ratio [11]. Consid-
eration of file duplication across different file sys-
tems substantiates further the potential data shar-
ing across different clients [1].

3. The Hades Architecture

The majority of the published literature on proxy
caching architectures typically refers to web envi-
ronments with predominantly read-only workloads
of limited reliability and consistency demands. Ad-
ditionally, web proxies support access granularity
of entire files and have limited security constraints
due to the public nature of the transferred data.
Furthermore, the disk-based caching system that is
most commonly used for file systems has mainly
been developed to run directly on personal work-
stations and is not optimized to support concurrent
requests from large numbers of users arriving from
different client machines.

3.1. Goals

In the architecture that we propose, we identify
three main directions for the development of effi-
cient file system proxy servers:

1. Organize the requested data on the proxy cache
in ways that improve the spatial storage local-
ity.

2. Allow reuse of the data available on the proxy
server across different clients using existing
standard protocols.

3. Replace files that have not been used recently
with consideration of their fetching latency
from the origin server.

We transfer data from the server to the proxy in
chunks of a configurable size similarly to the AFS
architecture. Instead of storing each chunk as a sep-
arate file on the disk cache, we organize the chunks
as contiguous segments of a large file in the proxy
server, called proxy file. The proxy file has size that
is only limited by the local file system. In our sys-
tem, we preallocate the space for multiple proxy files
according to the anticipated storage requirements of
the clients and the available resources.

The chunks of the same remote file that we fetch
with a single request from the origin server are
stored consecutively at the same local file. We also
store on the same local file the data chunks fetched



subsequently either from the same remote file, or
from different remote files by the same user. Due to
the spatial locality that we enforce at the proxy, we
anticipate that data repetitively used by a user can
be retrieved from the proxy cache with low access
overhead. However, the actual performance seen by
the end user also depends on the behavior of the
other users concurrently utilizing the same proxy
server.

The deployment of file system proxies is mainly
motivated by the need to access data across wide-
area networks. As a result, different files requested
from the proxy incur fetch latencies that vary ac-
cording to the actual location of the origin server. In
our replacement policy, we keep track of the amount
of time needed to fetch each chunk to the proxy.
We aim to preserve locality and avoid fragmenta-
tion during replacement. Thus, we treat as a sin-
gle unit, called chunk run, the group of chunks that
are stored consecutively on the proxy and belong to
the same remote file.

For each run, we keep track of the average fetch
latency across its chunks. We categorize the chunk
runs as local or remote depending on whether their
average latency is lower from or exceeds a config-
urable threshold. At the next replacement opera-
tion, we pick as victim the chunk run that is earli-
est in the LRU list and has the lowest average la-
tency. As a result, we first favor the local runs for
replacement. If our search for a local run fails in a
pass along the LRU list, then we pick for replace-
ment the remote run that has been least recently
used.

3.2. The Structure of OpenAFS

Here, we outline the basic on-disk and memory-
based data structures of the OpenAFS system that
we modified in our prototype implementation. One
critical component of OpenAFS is the file server
that runs at user level and exports local data to re-
mote clients. The cache manager plays fundamen-
tal role at the client kernel, because it improves data
transfer efficiency through local memory and on-
disk caching. The client cache is implemented as a
configurable number of disk files that are stored in
the ext2/3 file system of the client machine. Each
cache file has maximum size equal to the chunk used
for the transfers from the server (typically 256KB).
The cache files are created at the client in advance
during the system initialization. They appear as reg-
ular files with names Vi, where the index i takes val-
ues between 0 and a maximum configurable value.

Figure 2. The Hades system combines a mod-
ified OpenAFS client with a user-level NFS
server

Structures of type fcache associate each Vi file
with a chunk of a remote file. The fields of fcache
store metadata, such as the identifier of the remote
file, the offset, the chunk size, and the inode of the
local file. An array of fcache structures is stored per-
sistently on disk. For improved indexing efficiency,
a subset of the fcache structures is also maintained
in memory as a collection of dcache structures. Pe-
riodic updates keep the fcache contents consistent
with their memory counterparts.

Additionally, the client caches the metadata of
the remote files in the form of vcache structures.
Each request to the offset of a remote file can be
mapped quickly to the corresponding offset of a lo-
cal file at the client through the afs dchashTbl hash
table. The hash function translates the identifier
and the offset of the remote file to a hash table posi-
tion. A separate auxiliary hash table chains the ad-
ditional entries required in the case of collisions. If
the requested chunk is not available locally, a new
index entry is allocated along with a free local file to
store the data transferred from the remote server.

3.3. Implementation of Hades

We implemented the Hades proxy server based
on a combination of a modified OpenAFS client and
a regular NFS server as shown in Figure 2. Hades
accesses the files exported by a remote OpenAFS
server through an OpenAFS client that we mod-
ified appropriately for that purpose. Subsequently,
Hades re-exports the accessible remote files through
a regular NFS server. Finally, the client machines
use a normal NFS client to access the remote data
from the proxy server. In order to achieve our de-
sign goals we expanded the OpenAFS client along
the following three directions:

1. We preallocate multiple large local files and do
our own space management for each of them.



2. We expand the mapping structure of each lo-
cal file to store multiple chunks that belong to
different remote files.

3. We keep low the average access cost by replac-
ing locally cached chunks according to their ac-
cess recency and fetching latency.

Below, we explain in more detail our implementa-
tion along each of the above directions.

3.3.1. Cache Files. The size of each local file is
only limited by the settings of the local file system
at the proxy. We use a separate bitmap to manage
the storage space of each file and we call cacheblock
the respective unit of storage allocation. The de-
fault cacheblock size is 4KB. The size of chunks
that we transfer between the proxy and the origin
server is typically a multiple of the cacheblock size.
When an access request arrives, we search for the re-
quested number of consecutive cacheblocks starting
from the local file that was used more recently. Af-
ter the reservation at the bitmap, the fetched chunks
will be stored at the corresponding local file.

3.3.2. Mapping. For each remote file that is
cached at the proxy, we expanded the vcache struc-
ture to maintain pointers to the bitmap and the re-
spective dcache structure of the local cache file that
was last used. Other fields that we add to the struc-
ture include the starting chunk number and
the size of the last request cached at the lo-
cal file along with the local file offset where the
request is stored.

In the dcache structure of each local file we use
an array of pointers to fcache structures of remote
files (Figure 3). Thus, we associate a local file with
all the remote files that store chunks there. This is a
departure from the original OpenAFS implementa-
tion, where each local file could only store one chunk
of a single remote file and only needed one fcache
pointer. Finally, in each fcache structure we main-
tain an array of chunk descriptors. Thus, we keep
track of all the chunks of a remote file that have
been stored in the respective local file. Each chunk
descriptor includes fields about the number and size
of the remote file chunk along with the starting and
ending offset at the local file.

3.3.3. Allocation. When we receive a request for
part of a remote file, we can use the above struc-
tures to map the identifier and the chunk of the
remote file to the local file and the corresponding
offset where it is stored. If the requested part is
not locally cached, we reserve the needed number of
chunks at the first local file (starting from the last
used) that has enough consecutive space available.

Figure 3. The main structure of the modified
OpenAFS client in Hades.

We also update accordingly the dcache and fcache
structures about the remote chunks that we cached.
We fetch remote data in chunks and store them lo-
cally in cacheblocks. Assuming temporal locality in
the different requests, we store in nearby disk loca-
tions the different chunks of a remote file in order
to reduce disk seek overheads during subsequent re-
trievals.

For performance reasons, we also prefer to keep
in the proxy cache clustered the data of different
files requested by the same user. Thus, for each ac-
tive user we maintain a pointer to the bitmap of the
local file where the user cached data more recently.
During a request, if the user attempts to cache data
for first time, the bitmap pointer is null and we only
cluster data based on the identifier of the remote
file. Otherwise, we search for free space in the lo-
cal file where the user last cached data. If we don’t
find sufficiently large space to fit the request there,
we continue the search in the subsequent local file.

3.3.4. Hashing In the mechanism that we use to
map remote chunks to local file offsets, we use a
variation of the hash table used in the original Ope-
nAFS. We should note that in our implementation
the space of each local file is partitioned across the
different chunks of multiple remote files. This was
not the case in the original implementation of Ope-
nAFS, where each local file could only store a unique
remote chunk. Therefore, our system hashes differ-



ent chunks to the same entry of the afs dchashTbl
hash table. In order to address the need to map dif-
ferent chunks to the same local file, we remove the
auxiliary afs dcnextTbl table that was previously
implementing an open addressing scheme for colli-
sions. Instead, we implement hashing with chain-
ing after attaching a linked list to each entry of the
hash table.

When we search for a remote chunk, we hash
the identifier of the remote file and the requested
chunk number to a hash table entry. Then we search
through the attached linked list for a dcache struc-
ture that contains pointer to the requested remote
file. The fcache structure that corresponds to the
remote file should also contain pointer to the re-
quested chunk number. If the search succeeds, we
found the chunk locally cached. Otherwise, we add
a new node to the linked list of the hash table and
make it point to the right dcache structure after the
chunk is transferred from the remote server.

3.3.5. Replacement We expand the chunk LRU
list maintained by OpenAFS with an extra field,
called fetch latency, that we add to each list node.
There, we store the measured latency to fetch the
chunk from the remote server. During replacement,
we prefer as victims the LRU chunks with fetch la-
tency less than a preconfigured threshold. Although
we fully implemented the above replacement pol-
icy, we leave for future work its full evaluation and
don’t consider it any further here.

3.3.6. Summary The client kernel intercepts
each open request from a local application to a re-
mote file. During a read operation, the cache
manager uses the hash table to identify the lo-
cal file that stores the requested chunk. If the
chunk is not locally available, the cache man-
ager picks a local file and opens it for access.
The requested data is transferred from the re-
mote server to the local kernel buffers. Subse-
quently it is copied to the user-level address space
of the application and the local cache file. Subse-
quent requests to the same remote file are served
faster by taking advantage of locally cached file con-
tents, and also metadata related to volumes, remote
files and local chunks.

4. Experimental Evaluation

In the present section, we first describe the ex-
perimentation environment that we used to develop
and evaluate the Hades prototype. Then, we make
an extensive experimental evaluation on the paral-

lel retrieval of remote files and the reuse of cached
data across multiple clients.

4.1. Environment

In our experiments, we used rack-mounted x86
servers with one quad-core processor 2.33GHz, 2GB
RAM and gigabit ethernet nic. Every server has two
SATA disks each of 250GB, 7.5KRPM and 16MB.
buffer. The servers run the Debian distribution of
Linux kernel version 2.6.18. The Hades implemen-
tation is based on version 1.4.5 of OpenAFS, Ker-
beros version 5 and version 2.2 of user-level NFS
server. Unless otherwise specified, we used the de-
fault chunk size of 256KB and cacheblock size 4KB,
respectively, for transfer and storage of data at the
proxy cache.

4.2. Retrieval of Cached Data

Our first set of experiments uses a microbench-
mark that we run directly at the proxy server. Our
purpose is to evaluate the comparative advantage
of Hades with respect to OpenAFS, when we read
files stored at the origin server. We measure the la-
tency to read each file block and the corresponding
transfer throughput at the proxy server. We con-
sider three file access modes that differ in the con-
currency of the transfers and the involvement of the
origin server during their service. We refer with Par
and Seq to the parallel and sequential transfers, re-
spectively, and we use Cd and Wm for the cold and
warm proxy disk cache. Below we describe our three
access modes:

Par/Cd. The files are requested with the proxy
cache empty. The proxy server first prepares the
mapping from the requested files to the local files,
then it transfers the files from the origin server to
the local page cache in chunk units, and finally it
copies the files to the user-level memory of the proxy
server in blocks of 4KB.

Par/Wm. The files are requested concurrently af-
ter the proxy disk cache has been warmed up. We
enforce local disk accesses by flushing the memory
page cache before starting the experiment.

Seq/Wm. Depending on the file size, the previ-
ous two cases initiated multiple threads across one
or two users to request concurrently multiple files.
In this mode, we only have one user making a se-
quence of file accesses from the warm disk cache of
the proxy server.

In our experiments we transfer files of four dif-
ferent sizes:
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Figure 4.We measure thefile access throughputat the proxy server across different sizes of transferred
files. Consistently, Hades achieves a substantial throughput improvement with respect to OpenAFS
that gets up to 80%. See text for explanation of the Par/Seq and Wm/Cd abbreviations.

100KB. We have either two users reading in paral-
lel two separate sequences of 1000 files each, or one
user reading a sequence of 1000 files.

1MB. We have either two users reading in parallel
two separate sequences of 500 files each, or one user
reading sequentially 500 files.

100MB. In the first two modes we have the trans-
fer of five files in parallel, while in the third mode
we only read one file sequentially.

1GB. We transfer in parallel five files for the first
two modes, and do a sequential read of one file for
the third one.

In Figure 4, we measure the average through-
put during the sequential and parallel file transfers
across the different file sizes. It is remarkable that
Hades improves the measured throughput across all
cases. The lowest throughput that we measure is
9.56 MB/s, when the OpenAFS client reads in par-
allel two sequences of 100KB files from a cold proxy
cache. The corresponding Hades throughput is 23%
higher at 11.74 MB/s. The highest throughput of
OpenAFS is 17.42 MB/s for 1000 files of 100KB
read from a warm proxy cache, while the highest
throughput of Hades is 25.15 MB/s for a single file
of 1GB read from a warm proxy cache.

We attribute the improvement of Hades to differ-
ent reasons across the cases that we examine. In Fig-
ure 5 we can see the breakdown of the block read la-
tency. The read time of each block is spent across
(i) mapping the requested block to the offset of the
local cache file, (ii) fetching from the origin server

and storage to the local cache, (iii) copying from
the local cache to the user-level memory. In the cat-
egory of fetching, we include the rest of unaccount-
able transfer delays.

We note that the initial read from the cold proxy
cache incurs substantial mapping overhead in Ope-
nAFS. This is the cost to insert into the hash
structure the information to find the cached remote
blocks next time we look for them. Hades avoids this
overhead by storing together in an array of chunk
descriptors the mapping of all the chunks that cor-
respond to the same remote file. We simplified addi-
tionally the hashing structure by attaching a linked
list to each entry of the hash table. The length of
the lists is short, since we only use a limited num-
ber of large local files. Other optimizations that we
did include adding a hint for the local file of each re-
mote file, and moving to the front of the list a found
local file.

When the files are accessed from a warm proxy
cache (Wm), the component fetch+other is negligi-
ble. Also, the mapping overhead is insignificant af-
ter the mapping structure has been created during
the warming up. Thus, the dominant component in
accessing the warm cache of the proxy is to get the
data from the local disk. The reduction of the block
read latency during the parallel transfers (Par/Wm)
of Hades can be attributed to the spatial locality in
the storage of the cached data. In particular, we
store to the same local file the chunks of either the
same remote file or different remote files retrieved
from the same user. Instead, OpenAFS distributes
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the retrieved chunks across an equal number of sepa-
rate files in the proxy server. The same reason leads
to the reduced block read time of Hades in com-
parison to OpenAFS when reading one or multiple
files sequentially by one user (Seq/Wm). In com-
parison to the sequential transfer, parallel transfers
share the available disk bandwidth and expand cor-
respondingly the page read latency. For example,
the bar height of the Seq/Wm measurement is ap-
proximately half or one fifth of the Par/Wm mea-
surement depending on whether we have two or five
parallel transfers.

In summary, we notice that our decision to clus-
ter at the proxy server the cached data requested
from the same remote file or by the same user ends
up to a substantially improved read performance
from the warm cache. Additionally, we improve the
read performance from the cold cache by making
more efficient the mechanism of mapping remote
chunks to local file offsets.

4.3. Software Compilation

As an application to examine the general bene-
fits of proxy caching, we use the building of linux
kernel version 2.6.18. We assume that the source
code is made commonly available from an OpenAFS
volume (i) directly to OpenAFS clients (OO), (ii)
to NFS clients through a proxy server running un-

modifed OpenAFS client and user-level NFS server
(OON), (iii) to NFS clients through the Hades pro-
totype (OHN). We know in advance that the rel-
ative benefits of Hades in comparison to the origi-
nal OpenAFS client are mostly evident when we re-
trieve large files from a warm cache. Instead, the
present experiment we retrieve small files of a few
kilobytes from a cold cache. Nevertheless, the soft-
ware build is a baseline benchmark typically used
in such types of experimentations [4].

In Figure 6(a) we measure the number of received
and transmitted bytes at the origin (S) and the
proxy (P) server, when we have one client (1), four
clients (4) and four clients with the proxy at a dis-
tance from the origin of 50ms round-trip time (4D).
Obviously, when we increase the number of clients
from one to four, there is corresponding increase in
the throughput of the origin server at the OO config-
uration. Instead, the intervention of the proxy server
keeps constant the consumed bandwidth at the ori-
gin server, as we see in cases OON and OHN.

On the other hand, even with one client talking
to the proxy, the NFS system consumes an excess of
four time more network bandwidth than what Ope-
nAFS requires for the same connection. Admittedly,
the NFSv3 protocol that we use has been previously
described as too chatty [4,13]. In fact, the version 4
of NFS makes more efficient the communication be-
tween the client and the server for example through
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Figure 6. We build the Linux kernel on one (1) client, four (4) clients, and four clients with the origin
50ms away (4D). O refers to OpenAFS, N to NFS and H to Hades. The proxy cache is cold before
each experiment that uses it. (a) We measure the total number of received and transmitted bytes in
the origin (S) and the proxy (P) server. (b) With cold proxy cache, the intervention of the proxy server
increases the compilation time. For retrieved files of only a few kilobytes each, Hades only achieves a
modest reduction from 2315 to 2119 s (8.5%) in comparison to the original OpenAFS.

delegations and compound statements. However, for
a simple scenario, where multiple clients only read
data from a common server without any modifica-
tions, the cost of NFS seems excessively high. There-
fore, our consideration of OpenAFS as an alter-
native protocol for building proxy servers demon-
strates a lot of potential. In Figure 6(b), we com-
pare the compilation time across the different sys-
tems configurations and numbers of clients. As we
see, the direct connection between the OpenAFS
client and server leads to the shortest compilation
time. The benefit of Hades with respect to the un-
modified OpenAFS is only limited to 8.5%. This be-
havior is justified from the small file sizes that typ-
ically dominate source codes.

Overall, we conclude that proxy servers can re-
duce the required network bandwidth from the ori-
gin server, but they may introduce access delays
during the first access of the requested data from a
cold cache. Furthermore, OpenAFS requires signifi-
cantly less bandwidth when compared to NFS, even
though the latter is considered defacto choice for
proxy server in the latest related research projects.

5. Related Work

Howells introduced the FS-Cache facility that
can be used by a network file system to cache
data on local disks [5]. Previous evaluations showed
some performance limitations due to double buffer-
ing across the local file system and the client of the
network file system. Gulati et al. implemented the
Nache caching proxy for the NFSv4 [4]. The proxy
uses an NFSv4 client to access the remote server,
an NFSv4 server to reexport the client to the local
users, and CacheFS to cache files in persistent stor-
age. Instead, in the present paper we examine Ope-
nAFS as an alternative basis for building a proxy
server. Muntz and Honeyman used simulations to
show that the request rate seen by the origin server
was not significantly reduced by the proxy server
due to the relatively low sharing across the differ-
ent clients in the traces that they studied [10].

Stolarchuk uses several hints in order to improve
the speed of the common case of the AFS Cache
Manager [17]. After reducing the overheads of cache
consistency checks and file-to-chunk mapping, ac-
cess of the AFS cache becomes comparable to that
of the local file system. Additionally, we consider
storage locality as an alternative direction to im-
prove performance. Sivathanu and Zadok proposed



the xCachefs framework that allows to persistently
cache the data from any slow file system to a fast
file system [16]. They use a directory structure at
the cache as exact copy of the source file system,
while we organize the cached data at the proxy in
ways that improve storage locality.

Matthews et al considered the dynamic reorga-
nization of the stored data in order to improve the
read performance of the log-structured file system
[8]. In a different work, Vongsathorn and Carson
proposed a disk subsystem that adaptively corrects
the disparity between expected and actual access
pattern by reorganizing the disk data [18]. Instead,
we organize the remote data when first cached at
the proxy server disks by file id and requesting user.
Young proposed the Landlord deterministic online
algorithm for replacing files of specific size and re-
trieval cost in a limited-size cache [20]. The Adap-
tive Replacement Cache (ARC) automatically keeps
a balance between recency and frequency in an on-
line and selftuning manner [9]. We consider data
replacement a major issue in proxy servers for dis-
tributed file system that deserves further investiga-
tion.

6. Conclusions

We introduced several methods that improve the
efficiency of storage and metadata management in
a proxy server for distributed file systems. Through
our prototype implementation we experimentally
evaluate the performance and related cost across
different file sizes and numbers of clients. Even
though a proxy server can reduce substantially the
required network bandwidth at the origin server, it
may introduce additional latencies when the cache is
cold. In the future, we plan to experimentally eval-
uate additional applications and investigate alter-
native data replacement methods using our proto-
type.
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