
16

Incremental Text Indexing for Fast Disk-Based Search

GIORGOS MARGARITIS and STERGIOS V. ANASTASIADIS, University of Ioannina

Real-time search requires to incrementally ingest content updates and almost immediately make them
searchable while serving search queries at low latency. This is currently feasible for datasets of moderate
size by fully maintaining the index in the main memory of multiple machines. Instead, disk-based methods
for incremental index maintenance substantially increase search latency with the index fragmented across
multiple disk locations. For the support of fast search over disk-based storage, we take a fresh look at incre-
mental text indexing in the context of current architectural features. We introduce a greedy method called
Selective Range Flush (SRF) to contiguously organize the index over disk blocks and dynamically update it
at low cost. We show that SRF requires substantial experimental effort to tune specific parameters for per-
formance efficiency. Subsequently, we propose the Unified Range Flush (URF) method, which is conceptually
simpler than SRF, achieves similar or better performance with fewer parameters and less tuning, and is
amenable to I/O complexity analysis. We implement interesting variations of the two methods in the Proteus
prototype search engine that we developed and do extensive experiments with three different Web datasets
of size up to 1TB. Across different systems, we show that our methods offer search latency that matches or
reduces up to half the lowest achieved by existing disk-based methods. In comparison to an existing method
of comparable search latency on the same system, our methods reduce by a factor of 2.0–2.4 the I/O part of
build time and by 21–24% the total build time.

Categories and Subject Descriptors: H.3.1 [Information Storage and Retrieval]: Content Analysis and
Indexing—Indexing methods; H.3.2 [Information Storage and Retrieval]: Information Storage—File
organization; H.3.4 [Information Storage and Retrieval]: Systems and Software

General Terms: Algorithms, Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Inverted files, online maintenance, search engines, prototype implemen-
tation, performance evaluation

ACM Reference Format:
Giorgos Margaritis and Stergios V. Anastasiadis. 2014. Incremental text indexing for fast disk-based search.
ACM Trans. Web 8, 3, Article 16 (June 2014), 31 pages.
DOI: http://dx.doi.org/10.1145/2560800

1. INTRODUCTION

Digital data is accumulated at exponential rate due to the low cost of storage space
and the easy access by individuals to applications and Web services that support fast
content creation and data exchange. Traditionally, Web search engines periodically
rebuild in batch mode their entire index by ingesting tens of petabytes of data with
the assistance of customized systems infrastructure and data processing tools [Brewer
2005; Dean and Ghemawat 2008; Dean and Barroso 2013]. This approach is sufficient
for Web sites whose content changes relatively infrequently, or their enormous data
volume makes infeasible their continuous tracking.

Part of the manuscript appeared in preliminary form in Proceedings of the 2009 ACM Conference on Infor-
mation and Knowledge Management (CIKM), pp. 455–464.
This work was supported in part by a Graduate Scholarship from Bodossaki Foundation, Athens, Greece.
Authors’ addresses: G. Margaritis and S. V. Anastasiadis (corresponding author), Department of Computer
Science and Engineering, University of Ioannina, Ioannina 45110, Greece: email: stergios@cs.uoi.gr.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
c© 2014 ACM 1559-1131/2014/06-ART16 $15.00

DOI: http://dx.doi.org/10.1145/2560800

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



16:2 G. Margaritis and S. V. Anastasiadis

Today, users are routinely interested to search the new text material that is fre-
quently added across different online services, such as news Web sites, social media,
mail servers, and file systems [Lempel et al. 2007; Shah et al. 2007; Büttcher and
Clarke 2008; Bjorklund et al. 2010; Geer 2010; Busch et al. 2012]. Indeed, the sources
of frequently changing content are highly popular Web destinations that demand al-
most immediate search visibility of their latest additions [Lempel et al. 2007; Lester
et al. 2008; Büttcher and Clarke 2008; Peng and Dabek 2010; Busch et al. 2012]. Real-
time search refers to the fast indexing of fresh content and the concurrent support of
interactive search; it is increasingly deployed in production environments (e.g., Twitter,
Facebook) and actively investigated with respect to the applied indexing organization
and algorithms.

Text-based retrieval remains the primary method to identify the pages related
to a Web query, while the inverted file is the typical index structure used for Web
search [Arasu et al. 2001; Brewer 2005; Chen et al. 2011]. An inverted file stores for
each term a list of pointers to all the documents that contain the term. A pointer to a
document is called a posting, and a list of postings for a particular term is called an
inverted list [Zobel and Moffat 2006]. The lexicon (or vocabulary) of the inverted file
associates every term that appeared in the dataset to its inverted list. In a word-level
index a posting specifies the exact position where a term occurs in the document, unlike
a document-level index that only indicates the appearance of a term in a document.
Word positions are valuable in Web search because they are used to identify the adja-
cency or proximity of terms, such as in phrase queries (see also Section 7) [Arasu et al.
2001; Williams et al. 2004; Brewer 2005; Zobel and Moffat 2006].

A Web-scale index applies a distributed text indexing architecture over multiple ma-
chines [Arasu et al. 2001; Barroso et al. 2003; Brewer 2005; Baeza-Yates et al. 2007a;
Leibert et al. 2011]. Scalability is commonly achieved through an index organization
called document partitioning. The system partitions the document collection into dis-
joint subcollections across multiple machines and builds a separate inverted index
(index shard) on every machine. A client submits a search query to a single machine
(master or broker). The master broadcasts the query to the machines of the search
engine and receives back disjoint lists of documents that satisfy the search criteria.
Subsequently, it collates the results and returns them in ranked order to the client.
Thus, a standalone search engine running on a single machine provides the basic build-
ing block for the distributed architectures that provide scalable search over massive
document collections.

When a fresh collection of documents is crawled from the Web, a batch update scheme
rebuilds the index from scratch. Input documents are parsed into postings with the
accumulated postings periodically flushed from memory into a new partial index on
disk. Techniques similar to external sorting merge the multiple index files into a single
file at each machine [Zobel and Moffat 2006]. Due to fragmentation of each inverted
list across multiple partial indices on a machine, search is supported by an older index
during the update. Instead, an incremental update scheme continuously inserts the
freshly crawled documents into the existing inverted lists and periodically merges the
generated partial indices to dynamically maintain low search latency [Hirai et al. 2000;
Lempel et al. 2007].

Disk-based storage is known as a performance bottleneck in search. Thus, index
pruning techniques have been developed to always keep in memory the inverted lists
of the most relevant keywords or documents, but lead to higher complexity in index
updating and context-sensitive query handling [Broder et al. 2003; Zobel and Moffat
2006; Anh and Moffat 2006; Ntoulas and Cho 2007; Strohman and Croft 2007]. Al-
though the latency and throughput requirements of real-time search are also currently
met by distributing the full index on the main memory of multiple machines [Busch

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



Incremental Text Indexing for Fast Disk-Based Search 16:3

et al. 2012], the purchase cost of DRAM is two orders of magnitude higher than that of
disk storage capacity [Saxena et al. 2012]. Therefore, it is crucial to develop disk-based
data structures, algorithmic methods, and implementation techniques for incremental
text indexing to interactively handle queries without the entire index in memory.

In this study we examine the fundamental question of whether disk-based text in-
dexing can efficiently support incremental maintenance at low search latency. We focus
on incremental methods that allow fast insertions of new documents and interactive
search over the indexed collection. We introduce two new methods, the Selective Range
Flush and Unified Range Flush. Incoming queries are handled based on postings re-
siding in memory and the disk. Our key insight is to simplify index maintenance by
partitioning the inverted file into disk blocks. A block may contain postings of a single
frequent term or the inverted lists that belong to a range of several infrequent terms
in lexicographic order. We choose the right block size to enable sequential disk accesses
for search and update. When memory gets full during index construction, we only flush
to disk the postings of those terms whose blocks can be efficiently updated. Due to the
breadth of the examined problem, we leave outside the study scope several orthogonal
issues that certainly have to be addressed in a production-grade system, such as con-
currency control [Lempel et al. 2007], automatic failover [Leibert et al. 2011], or the
handling of document modifications and deletions [Lim et al. 2003; Guo et al. 2007].

For comparison purposes, we experiment with a software prototype that we devel-
oped, but we also apply asymptotic analysis. In experiments with various datasets, we
achieve search latency that depends on the number of retrieved postings rather than
fragmentation overhead, as well as index building time that is substantially lower than
that of other methods with similar search latency. To the best of our knowledge, our
indexing approach is the first to group infrequent terms into lexicographic ranges, par-
tially flush both frequent and infrequent terms to disk, and combine the aforesaid with
block-based storage management on disk. Prior maintenance methods for inverted files
randomly distributed the infrequent terms across different blocks [Tomasic et al. 1994],
or handled each term individually [Zobel et al. 1993; Brown et al. 1994]. Alternatively,
they partially flushed to disk only the frequent terms [Büttcher et al. 2006a; Büttcher
and Clarke 2008], or used disk blocks of a few kilobytes with limited benefits [Brown
et al. 1994; Tomasic et al. 1994].

The main contributions of the present manuscript include:

(i) reconsideration of incremental text indexing for fast disk-based search;
(ii) introduction of two innovative methods and a storage organization scheme for

disk-based text indexing;
(iii) prototype implementation of our methods into a functional system;
(iv) experimental measurement of search and update time across representative in-

dexing methods across different systems;
(v) comparative evaluation of different configuration parameters, storage and memory

allocation methods, and datasets; and
(vi) asymptotic I/O analysis of build cost for Unified Range Flush.

In Section 2 we provide background information on incremental text indexing before
we experimentally motivate our work in Section 3. In Section 4 we specify the stud-
ied problem, present the system structure, and introduce our indexing methods. We
describe our prototype implementation in Section 5. In Section 6 we go over our experi-
mentation environment and present build and search performance measurements from
experiments with alternative methods, system parameters, datasets, and systems. We
comprehensively compare our study with previous related work in Section 7 and out-
line our conclusions in Section 8. Finally, in Appendix A we provide an I/O complexity
analysis of Unified Range Flush.

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



16:4 G. Margaritis and S. V. Anastasiadis

Table I. Asymptotic Cost (in I/O operations) Required to Incrementally Build Inverted Files and Retrieve
Terms for Query Handling

Index Maintenance Method Build Cost Search Cost
Nomerge [Tomasic et al. 1994; Lester et al. 2008]

�(N) N/M
[Büttcher et al. 2006b; Heinz and Zobel 2003]
Immediate Merge

�(N2/M) 1[Lester et al. 2008; Cutting and Pedersen 1990]
[Büttcher and Clarke 2008]
Logarithmic Merge [Büttcher et al. 2006b],

�(N · log(N/M)) log(N/M)
Geometric Partitioning [Lester et al. 2005, 2008]
Geometric Partitioning with ≤ p partitions

�(N · (N/M)1/p) p
[Lester et al. 2008]
Hybrid Immediate Merge

�(N1+1/a/ M)
1 or 2 (according to
the list threshold)[Büttcher et al. 2006b; Büttcher and Clarke 2008]

Unified Range Flush [Appendix A]
Hybrid Logarithmic Merge [Büttcher et al. 2006b] �(N) log(N/M)

N is the number of indexed postings and M is the amount of main memory used for postings
gathering. The parameter a (e.g., a = 1.2) refers to the Zipf distribution (Appendix A).

2. BACKGROUND

In this section, we summarize the current general approaches of incremental text
indexing and factor out the relative differences of existing methods with respect to the
new methods that we introduce.

Merge-based methods maintain on disk a limited number of files that contain frag-
ments of inverted lists in lexicographic order. During a merge, the methods read se-
quentially the lists from disk, merge each list with the new postings from memory, and
write the updated lists back to a new file on disk. The methods amortize the I/O cost if
they create on disk multiple inverted files and merge them in specific patterns [Lester
et al. 2005, 2008]. In-place methods avoid reading the whole disk index and incremen-
tally build each inverted list by appending new memory postings at the end of the
list on disk. The need for contiguity makes it necessary to relocate the lists when the
disk runs out of empty space at their end [Tomasic et al. 1994; Lester et al. 2004,
2006; Büttcher and Clarke 2008]. Although the linear I/O cost of in-place methods is
lower than the polynomial of merge-based, the sequential disk transfers of merge-based
indexing practically outperform the random I/O of in-place [Lester et al. 2006].

Hybrid methods separate terms into short and long according to the term popularity
in the indexed dataset. Recent methods use a merge-based approach for the short
terms and in-place appends for the long ones. The system treats a term as short or
long depending on the number of postings that either have shown up in total until
now (contiguous) [Büttcher et al. 2006a] or participate in the current merging process
(noncontiguous) [Büttcher et al. 2006b]. In the noncontiguous case, if a term contributes
more than T (e.g., T = 1MB) postings to the merging process, the method moves the
postings from the merge-based index to the in-place index; this reduces the build time
but may slightly increase the retrieval time of long terms due to their storage on
both the in-place and merge-based indices. Depending on their functional availability,
we consider alternative variations of the Wumpus [2011] methods in our experiments
(Section 6).

As shown in Table I for representative methods, the asymptotic complexity of index
building is estimated by the number of I/O operations expressed as a function of the
number of indexed postings. We include the search cost as the number of partial indices
(also called runs) across which an inverted list is stored. The Nomerge method flushes

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



Incremental Text Indexing for Fast Disk-Based Search 16:5

Fig. 1. Hybrid Immediate Merge only applies partial flushing to long (frequent) terms, while Selective
Range Flush (SRF) and Unified Range Flush (URF) partially flush both short (infrequent) and long terms.
Unlike SRF, URF organizes all postings in memory as ranges, allows a term to span both the in-place and
merge-based indices, and transfers postings of a term from the merge-based to the in-place index every time
they reach a size threshold Ta (see also Section 4.5).

its postings to a new run on disk every time memory gets full. Although impractical
to process queries, Nomerge provides a baseline for the minimum indexing time. The
Immediate Merge method repeatedly merges the postings in memory with the entire
inverted file on disk every time memory gets full. The Geometric Partitioning and Log-
arithmic Merge methods keep multiple runs on disk and use a hierarchical pattern
to merge the postings of memory and the runs on disk. The Geometric Partitioning
method with ≤p partitions continuously adjusts the fanout of the merging tree to keep
the number of runs on disk at most p. In the particular case of p = 2, Geometric Par-
titioning is also known as Square Root Merge [Büttcher et al. 2006b]. Hybrid versions
of the preceding methods partition the index into in-place and merge-based indices.

Our methods, Selective Range Flush and Unified Range Flush, differ from existing
ones because we organize the infrequent terms into ranges that fit into individual disk
blocks and store each frequent term into dedicated disk blocks (Figure 1). Additionally,
we only partially flush frequent and infrequent terms from memory to preserve the
disk I/O efficiency. The two methods differ with respect to the criteria that they apply
to categorize the terms as short or long and also to determine which terms should be
flushed from memory to disk. In Table I we include the asymptotic costs of Unified
Range Flush as estimated in Appendix A.

According to experimental research, build time may additionally depend on system
structures and parameters not always captured by asymptotic cost estimates [Lester
et al. 2006; Büttcher and Clarke 2008]. Thus, although the Hybrid Immediate Merge
and Unified Range Flush have the same asymptotic complexity as shown in Table I,
we experimentally find their measured merge performance to substantially differ by a
factor of 2. More generally, the potential discrepancy between theoretical and empirical
results is a known issue in literature. For instance, online problems are the type of
optimization problems that receive input and produce output in online manner, but each
output affects the cost of the overall solution. Several paging algorithms are examples
of online algorithms that theoretically incur the same relative cost (competitive ratio) to
an optimal algorithm, but they clearly differ with respect to experimentally measured
performance [Borodin and El-Yaniv 1998].

In Table II, we factor out the main functional differences among representative
methods that we consider. The index update varies from simple creation of new runs,
to purely merge-based and hybrid schemes. In hybrid schemes, term postings are re-
spectively stored at the merge-based or in-place index according to their count in the
entire index (Total) or the index part currently being merged (Merge). The merging
pattern varies from sequential with a single run on disk, to hierarchical that tightly
controls the number of runs and range-based that splits the index into nonoverlapping
intervals of sorted terms. When the memory fills up, most existing methods flush the

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



16:6 G. Margaritis and S. V. Anastasiadis

Table II. Main Functional Differences among Existing and Our New Methods of Incremental Text Indexing

Index Maintenance Update Threshold Merging Partial Flushing Storage
Method Scheme Count Pattern Flushing Criterion Unit
Nomerge new run none none none full mem. runs
Immediate Merge merge none sequential none full mem. single run
Geometric Partition. merge none hierarchical none full mem. partitions
Hybrid Log. Merge hybrid merge/total hierarchical none full mem. segments
Hybrid Imm. Merge hybrid merge/total sequential in-place list size segments
Select. Range Flush hybrid total range-based both list ratio blocks
Unified Range Flush hybrid merge range-based both range size blocks

entire memory to disk except for the Hybrid Immediate Merge that partially flushes
long terms; in contrast, our methods apply partial flushing to both frequent and infre-
quent terms (Figure 1). The criterion of partial memory flushing alternatively considers
the posting count of individual terms and term ranges or their ratio. Most methods al-
locate the space of disk storage as either one or multiple runs (alternatively called
partitions or segments [Büttcher et al. 2006b]) of overlapping sorted terms, while we
use blocks of nonoverlapping ranges.

3. THE SEARCH COST OF STORAGE FRAGMENTATION

In this section we experimentally highlight that search latency is primarily spent on
disk I/O to retrieve inverted lists. Across different queries, latency can be relatively
high even when stop-words are used or caching is applied, which makes the efficiency
of storage access highly relevant in fast disk-based search [Zobel and Moffat 2006;
Baeza-Yates et al. 2007b].

Early research on disk-based indexing recognized as a main requirement the con-
tiguous storage of each inverted list [Cutting and Pedersen 1990; Tomasic et al. 1994].
Although storage contiguity improves access efficiency in search and update, it also
leads to complex dynamic storage management and frequent or bulky relocations of
postings. Recent methods tend to relax the contiguity of inverted lists so that they
lower the cost of index building. One particular study partitioned the postings of each
term across multiple index files and stored the inverted list of each long term as a chain
of multiple noncontiguous segments on disk [Büttcher et al. 2006b]. Not surprisingly,
it has been experimentally shown across different systems that multiple disk accesses
(e.g., 7 in GOV2) may be needed to retrieve a fragmented inverted list regardless of
the list length [Lester et al. 2008; Margaritis and Anastasiadis 2009]. List contiguity
is particularly important for short terms because they dominate text datasets and are
severely affected by list fragmentation. From the Zipf distribution of term frequency,
the inverted file of a 426GB text collection has more than 99% of inverted lists smaller
than 10KB [Cutting and Pedersen 1990; Büttcher et al. 2006b]. If a list of such size is
fragmented into k runs, the delay of head movement in a hard disk typically increases
the list retrieval time by a factor of k.

We examine the importance of query I/O efficiency by using the Zettair search engine
with an indexing method that stores the inverted lists contiguously on disk [Zettair
2009]. Using the index of the GOV2 (426GB) text collection, we evaluate 1,000 standard
queries [TREC 2006] in a server as specified in Section 6.1 with a disabled buffer cache.
Thus, we measure the time to return the 20 most relevant documents per query along
with the percentage of time spent on I/O. We sort the queries by increasing response
time and calculate the average query time for the 50%, 75%, 90%, 95%, and 100%
fastest. According to the last row of Table III, 64% of the average query time is spent

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



Incremental Text Indexing for Fast Disk-Based Search 16:7

Table III. Search Time and
its I/O Fraction in

GOV2/Zettair

Queries Avg I/O
(%) (ms) (%)
50 105 67
75 255 58
90 680 58
95 1,053 61
100 1,726 64

Table IV. Average, Median and 99th Percentile of Search Latency
when Different Numbers of Stop-Words are Applied with and

without Page Caching Using the GOV2 Dataset over the Zettair
Search Engine

stop
words

w/out caching w/ caching
avg med 99th avg med 99th

0 1,726 291 19,616 1,315 274 13,044
10 640 247 5,283 508 217 4,182
20 489 242 3,221 413 204 2,873
100 411 232 2,398 341 188 1,959

on I/O for reading inverted lists from disk. The percentage becomes 67% for the 50%
fastest queries, which mostly consist of nonfrequent terms with small inverted lists.

Caching keeps in memory the postings of frequently queried terms, while stop-words
are frequent terms usually ignored during query handling [Zobel and Moffat 2006;
Baeza-Yates et al. 2007b]. From Table IV it follows that enabling the page cache de-
creases by 24% the average latency, 6% the median, and 34% the 99th percentile.
Caching is generally known to reduce the latency of interactive services, but cannot
directly address the problem of variable responsiveness in distributed systems unless
the entire working set resides in main memory [Dean and Barroso 2013]. If we addi-
tionally omit the 10, 20, or 100 most common stop-words during query handling, the
enabled buffer cache still decreases latency by about 18% on average. For instance,
using 10 stop-words combined with caching lowers the average latency by 71% from
1.7s to 508ms, of which 45% is still spent on I/O.

Query latency is often evaluated using average measurements that do not convey
the high variations across different queries [Büttcher et al. 2006b; Lester et al. 2005].
In Table III, the average query latency is about 1.7s, even though the 50% fastest
queries only take an average of 105ms. If we presumably double the duration of the
50% fastest queries, the average latency across all the queries is only increased by 3%.
Similarly, the discrepancy between the average and median latency measurements in
Table IV further demonstrates the effect from the few long queries to the measured
statistics. A long query involves a large number of documents or terms and greatly
affects the user experience. Although sequential query execution is preferable at heavy
load, parallel evaluation reduces the response time at low or moderate load. Addi-
tionally, multithreaded query handling processes the list chunks in their sequential
order [Jeon et al. 2013]. Therefore, the efficient handling of long queries is facilitated
through the preservation of storage contiguity.

Given the substantial time fraction of query handling spent on I/O, we advocate to
preserve the list contiguity of frequent and infrequent terms through the design and
storage-level implementation of the indexing method. Additionally, we aim to achieve
low query latency, both on average and across different percentiles.

4. SYSTEM ARCHITECTURE

We first describe the studied problem along with our goals, and then explain the data
structures and the SRF method to solve it. Motivated by our long experimental effort to
tune SRF, we then proceed to the description of the URF method with simpler structure
but similar (or even better, sometimes) build and search performance.

4.1. Problem Definition

In this study we mainly focus on the incremental maintenance of inverted files for
efficient index building and search. We do not examine the related problems of parsing
input documents to extract new postings, or the ranking of retrieved postings for query

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



16:8 G. Margaritis and S. V. Anastasiadis

relevance. We primarily aim to minimize the I/O time required to retrieve the term
postings of a query and the total I/O time involved in index building. More formally we
set the following two goals:

query handling: minimize
∑

i

I/O time to read the postings of termi (1)

index building: minimize
∑

j

I/O time to flush posting j, (2)

where i refers to the terms of a query and j refers to the postings of the indexed
document collection. The I/O time of query handling depends on the data volume read
from disk along with the respective access overhead. Similarly, the total I/O time of
index building is determined by the volume of data transferred between memory and
disk along with the corresponding overhead. Accordingly, we aim to minimize the
amount of read data during query handling, the amount of read and written data
during index building, and minimize access overheads in all cases.

Ideally, for efficient query handling we would store the postings of each term contigu-
ously on disk in order to retrieve a requested term with a single I/O. Also, for efficient
index building, we would prefer to flush new postings from memory to disk with a
single write I/O and without any involvement of reads. One challenge that we face in
index building is that we do not know in advance the term occurrences of the incoming
documents. As a result, we cannot optimally plan which postings to flush for maximum
I/O efficiency every time memory gets full.

In fact, the preceding goals are conflicting because the I/O efficiency of query han-
dling depends on the organization of term postings by index building. In the extreme
case that we write new postings to disk without care for storage contiguity, query han-
dling becomes impractical due to the excessive access overhead involved to read the
fragmented postings from disk. As a reasonable compromise, we only permit limited
degree of storage fragmentation in the postings of a term, and also ensure sufficient
contiguity to read a term roughly sequentially during query handling. At the same time
we limit the volume of data read during index building but with low penalty in the I/O
sequentiality of disk reads and writes. Next we explain in detail how we achieve this.

4.2. System Structure

As we add new documents to a collection, we accumulate their term postings in mem-
ory and eventually transfer them to disk. We lexicographically order the terms and
group them into ranges that fit into disk blocks (called rangeblocks) of fixed size Br.
Rangeblocks simplify the maintenance of inverted files because they allow us to selec-
tively update parts of the index. We flush the postings of a range R from memory by
merging them into the respective rangeblock on disk. If the merged postings overflow
the rangeblock, we equally divide the postings –and their range– across the original
rangeblock and any number of additional rangeblocks that we allocate as needed.

For several reasons, we do not store all the lists in rangeblocks. First, the list of a
frequent term may exceed the size of a single rangeblock. Second, the fewer the postings
in a rangeblock, the lower the update cost, because the merge operation transfers fewer
bytes from disk to memory and back. Third, we should defer the overflow of a rangeblock
because the ranges that emerge after a split will accumulate fewer postings than the
original range, leading to higher merging cost. Finally, we experimentally confirm that
merge-based management involves repetitive reads and writes that are mostly efficient
for collections of infrequent terms, while in-place management uses list appends that
are preferable for terms with large number of postings. Consequently, we store the
list of a frequent term on exclusively occupied disk blocks that we call termblocks. We

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



Incremental Text Indexing for Fast Disk-Based Search 16:9

dynamically allocate new termblocks as existing termblocks run out of empty space.
For efficiency, we choose the size Bt of the termblock to be different from the rangeblock
Br (Section 5). Where clarity permits, we collectively call posting blocks the rangeblocks
and termblocks.

The lexicon is expected to map each term to the memory and disk locations where
we keep the respective postings. The B-tree provides an attractive mapping structure
because it concisely supports ranges and flexibly handles large numbers of indexed
items. However, we experimentally noticed that the B-tree introduces multiple disk
seeks during lookups, thus substantially increasing the latency of index search and
update. As an alternative lexicon structure we considered a simple sorted table (called
indextable) that fully resides in memory. For each range or frequent term, the index-
table uses an entry to store the locations of the postings across the memory and disk.
For terms within a range, the indextable plays the role of a sparse structure that only
approximately specifies their position through the range location. For every terabyte
of indexed dataset, the indextable along with the auxiliary structures occupy memory
space in the order of few tens of megabytes. Therefore, the memory configuration of a
typical server makes the indextable an affordable approach to build an efficient lexicon.
We explain in detail the indextable structure in Section 5.

4.3. The Selective Range Flush Method

We call posting memory the space of capacity Mp that we reserve in main memory
to temporarily accumulate the postings from new documents. When it gets full, we
need to flush postings from memory to disk. We consider a term short or long if it,
respectively, occupies total space up to or higher than the parameter term threshold
Tt. For conciseness, we also use the name short or long to identify the postings and
inverted lists of a corresponding term.

Initially all terms are short, grouped into ranges, and transferred to disk via merging.
Whenever during a range merge the posting space of a term exceeds the threshold
Tt, we permanently categorize the term as long and move all its postings into a new
termblock. Any subsequent flushing of new postings for a long term is simply an append
to a termblock on disk (Section 5). We still need to determine the particular ranges and
long terms that we will flush to disk when memory gets full. Long postings incur a
one-time flushing cost, while short ranges require repetitive disk reads and writes for
flushing over time. From an I/O efficiency point of view, we prefer to only perform
a few large in-place appends and totally avoid merges or small appends. Although
writes appear to occur asynchronously and return almost instantly, they often incur
increased latency during subsequent disk reads due to the cleaning delays of dirty
buffers [Batsakis et al. 2008].

For efficient memory flushing, next we introduce the Selective Range Flush method
(Algorithm 1). We maintain the long terms and the term ranges sorted by the space
their postings occupy in memory (lines 1 and 2). We compare the memory space (bytes)
of the largest long list against that of the largest range (line 7). Subsequently, we flush
the largest long list (lines 8–13), unless its postings are Fp times fewer than those of
the respective range, in which case we flush the range (lines 15–28). We repeat the
preceding process until flushed memory (Mf ) bytes of postings are flushed to disk.
Our approach generalizes a previous method of partial memory flushing [Büttcher and
Clarke 2008] in two ways: (i) We avoid inefficiently flushing the entire posting memory
because we only move to disk Mf bytes per memory fill-up. (ii) In addition to long
terms, we also selectively flush ranges when their size becomes sufficiently large with
respect to that of long terms.

The constant Fp is a fixed configuration parameter that we call preference factor. Its
choice reflects our preference for the one-time flushing cost of a long list rather than the

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



16:10 G. Margaritis and S. V. Anastasiadis

ALGORITHM 1: Pseudocode of the SELECTIVE RANGE FLUSH method
1: Sort long terms by memory space of postings
2: Sort ranges by memory space of postings
3: while (flushed memory space < Mf ) do
4: T := long term of max memory space
5: R := range of max memory space
6: // Compare T and R by memory space of postings
7: if (R.mem postings < Fp × T .mem postings ) then
8: // Append postings of T to on-disk index
9: if (append overflows the last termblock of list) then
10: Allocate new termblocks (relocate the list if needed)
11: end if
12: Append memory postings to termblocks
13: Delete the postings of T from memory
14: else
15: // Merge postings of R with on-disk index
16: Read the lists from the rangeblock of R
17: Merge the lists with new memory postings
18: if (list size of term w > Tt) then
19: Categorize term w as long
20: Move the inverted list of w to new exclusive termblock
21: end if
22: if (rangeblock overflows) then
23: Allocate new rangeblocks
24: Split merged lists equally across rangeblocks
25: else
26: Store merged lists on rangeblock
27: end if
28: Delete the postings of R from memory
29: end if
30: end while

repetitive transfers between memory and disk of a range. We flush a range only when
the size of the largest long list becomes Fp times smaller. Then the flushing overhead
of the long list takes too much for the amount of data flushed. We also prefer to keep
the short postings in memory and avoid their merging into disk. The parameter Fp
may depend on the performance characteristics of the system architecture, such as the
head movement overhead, the sequential throughput of the disk, and the statistics of
the indexed document collection, such as the frequency of terms across the documents.

4.4. Sensitivity of Selective Range Flush

The SRF method behaves greedily because it only considers the memory space occupied
by a range or long term, and simply estimates the flushing cost of a range as Fp times
that of a long term. We extensively experimented with alternative or complementary
flushing rules that either: (i) directly estimate the disk I/O throughput of ranges and
long terms to prioritize their flushing, or (ii) aggressively flush the long terms with
memory space exceeding a minimum limit to exploit the append I/O efficiency, or
(iii) flush the ranges with fewest postings currently on disk to reduce the merging cost,
or (iv) periodically flush the ranges or long terms with low rate of posting accumulation.
In the context of the SRF algorithm, the approach to selectively flush a few tens
of megabytes from the largest terms or ranges in memory performed more robustly
overall.

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



Incremental Text Indexing for Fast Disk-Based Search 16:11

Table V. Sensitivity to Interactions between Rangeblock Size Br and Preference Factor Fp

Index Building Time (min) of Selective Range Flush
Fp

Br (MB) 5 10 20 40 80 160 max inc
8 42.83 42.57 42.83 43.55 44.97 47.52 +11.6%
16 42.58 41.63 41.22 41.48 42.08 43.28 +5.0%
32 43.42 41.68 41.38 40.43 40.73 41.18 +7.4%
64 46.90 42.85 41.77 41.02 41.15 41.28 +14.3%
128 51.77 46.82 43.73 41.87 41.75 41.52 +24.7%
256 62.18 53.28 46.75 43.57 43.13 42.40 +46.7%
max inc +46.0% +28.0% +13.4% +7.7% +10.4% +15.4%

We underline the lowest measurement on each row and use bold for the lowest on each
column. The highest measured time is 62.18min (Br = 256MB, Fp = 5), that is, 53.8%
higher than the lowest 40.32s (Br = 32MB, Fp = 40).

Table VI. Parameters of Selective Range Flush (SRF) and Unified Range Flush (URF)

Symbol Name Description Value
Br Rangeblock Byte size of rangeblock on disk 32MB
Bt Termblock Byte size of termblock on disk 2MB
Mp Posting Memory Total memory for accumulating postings 1GB
Mf Flushed Memory Bytes flushed to disk each time memory gets full 20MB
Fp Preference Factor Preference to flush short or long terms by SRF 20
Tt Term Threshold Term categorization into short or long by SRF 1MB
Ta Append Threshold Amount of postings flushed to termblock by URF 256KB

In the last column we include their default values used in our prototype.

SRF combines low indexing time with list contiguity on disk [Margaritis and
Anastasiadis 2009], but also has several shortcomings. First, if the statistics of a pro-
cessed dataset change over time, it is possible that a term initially reserves some
memory space, but then stops accumulating new postings to trigger flushing. Second,
in order for SRF to behave efficiently across different datasets, it requires tuning of
several parameters and their interactions for specific datasets or systems [Büttcher
and Clarke 2008]. For example, the optimal preference factor Fp and term threshold
Tt may vary across different term frequencies or interact in complex ways with other
system parameters, such as the rangeblock size Br. Third, as the dataset processing
progresses, the number of ranges increases due to rangeblock overflows; consequently,
the number of memory postings per range decreases, leading to low flushing efficiency.

In Table V we examine the variation of the SRF index building time across all possible
combinations of 7 values for Br and 6 for Fp (42 pairs in total). Due to the large number
of experiments involved, we limit the indexing to the first 50GB of GOV2. The elements
in the last row and column of the table report the largest increase of build time with
respect to the minimum measurement of the respective column and row. We notice
that as Br increases, for example, due to restrictions from the file system, then we
have to tune the preference factor to retain low build time. Otherwise, the build time
may increase as high as 47% with respect to the lowest measurement for a specific Br
value. The respective increase of the highest measured value to the lowest in the entire
table is 53.8%. After a large number of experiments across different combinations
of parameters, we identified as default values for build and search efficiency those
specified in Table VI (see also Sections 4.4 and 6.4).

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



16:12 G. Margaritis and S. V. Anastasiadis

ALGORITHM 2: Pseudocode of the UNIFIED RANGE FLUSH method
1: Sort ranges by total memory space of postings
2: while (flushed memory space < Mf ) do
3: R := range of max memory space
4: // Merge postings of R with on-disk index
5: Read the inverted lists from the rangeblock of R
6: Merge the lists with new memory postings
7: if (list size of term w > Ta) then
8: // Move postings of w to exclusive termblock
9: if (w does not have termblock or append will overflow last termblock) then
10: Allocate new termblocks (relocate list, if needed)
11: end if
12: Append memory postings to termblocks
13: end if
14: if (rangeblock overflows) then
15: Allocate new rangeblocks
16: Split merged lists equally across rangeblocks
17: else
18: Store merged lists on rangeblock
19: end if
20: Remove the postings of R from memory
21: end while

4.5. The Unified Range Flush Method

In order to facilitate the practical application of SRF, we evolved it to a new method that
we call Unified Range Flush (URF). In this method we assign each memory posting to
the lexicographic range of the respective term without the categorization as short or
long. Thus, we omit the term threshold Tt and preference factor Fp of SRF along with
their interactions against other parameters. When the posting memory gets full, we
always pick the range with the most postings currently in memory and merge it to disk,
including the terms that SRF would normally handle as long. In order to reduce the data
volume of merge, we introduce the append threshold (Ta) parameter. If the postings
of a term in a merge occupy memory space > Ta, we move them (append postings)
from the rangeblock to an exclusive termblock. Subsequently, the range continues to
accumulate the new postings of the term in the rangeblock, until their amount reaches
the number Ta again.

The pseudocode of URF is shown in Algorithm 2. In comparison to SRF, it is strikingly
simpler because we skip the distinct handling of short and long terms. Algorithm 2
simply identifies the range with the most postings in memory at line 3 and merges
it with the corresponding rangeblock on disk at lines 5–6 and 14–20. If there are
terms with amount of postings exceeding the threshold Ta, URF flushes them to their
corresponding termblocks at lines 7–13. From our experience across different datasets,
the parameter Ta controls the disk efficiency of the append operation and primarily
depends on performance characteristics of the I/O subsystem, such as the geometry
of the disk. Instead, the term threshold Tt of SRF permanently categorizes a term as
long and prevents it from merge-based flushing, even at low amount of posting memory
occupied by the term. The general approach of dynamic threshold adjustment followed
by previous research would only further complicate the method operation (e.g., in
Section 6.2 we examine the automated threshold adjustment θPF = auto [Büttcher and
Clarke 2008]).

The description of Ta bears some similarity to the definition of long-term thresh-
old T introduced previously [Büttcher et al. 2006b]. However, the URF algorithm has

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



Incremental Text Indexing for Fast Disk-Based Search 16:13

Fig. 2. (a) The prototype implementation of Proteus; (b) we maintain the hashtable in memory to keep track
of the postings that we have not yet flushed to disk; (c) each entry of the rangetable corresponds to a term
range and points to the search bucket, which serves as partial index of the corresponding rangeblock; (d) each
entry of the termtable corresponds to a term and points to the blocklist that keeps track of the associated
termblocks on disk.

fundamental differences from the hybrid approach of Büttcher et al. First, every invo-
cation of hybrid merge flushes all the postings currently gathered in memory. Instead,
we only flush the largest ranges with total amount of postings in memory at least Mf .
Second, the choice of Ta only affects the efficiency of the index building process, because
we separately control the search efficiency through the termblock size Bt. In contrast, T
determines the storage fragmentation of each long list; choosing small T improves the
update performance but reduces the efficiency of query processing. Indeed, we exper-
imentally found that it is possible to achieve lowest building time and search latency
for Ta around 128KB–256KB, but such small values for T would significantly lower
query processing performance due to the excessive fragmentation in long lists.

We summarize the parameters of our architecture in Table VI. In the following
sections, we show that URF in comparison to SRF: (i) has fewer parameters and lower
sensitivity to their values, (ii) has similar index maintenance performance (or better
over a large dataset) and search performance, and (iii) has more tractable behavior
that allows us to do complexity analysis of index building in Appendix A.

5. PROTOTYPE IMPLEMENTATION

The Proteus system is a prototype implementation that we developed to investigate
our inverted file management (Figure 2(a)). We retained the parsing and search com-
ponents of the open-source Zettair search engine (v. 0.9.3) [Zettair 2009]. Unlike the
original implementation of Zettair that builds a lexicon for search at the end of in-
dex building, we dynamically maintain the lexicon in Proteus throughout the building

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



16:14 G. Margaritis and S. V. Anastasiadis

process. We store the postings extracted from the parsed documents in a memory-based
hashtable that we call hashtable (Figure 2(b)). The inverted list of each term consists
of the document identifiers along with the corresponding term locations in ascending
order. We store each list as an initial document identifier and location followed by a
list of gaps compressed with variable-length byte-aligned encoding [Zobel and Moffat
2006]. Compression considerably reduces the space requirements of postings across
memory and disk.

We keep track of the term ranges in a memory-based sorted array that we call
rangetable (Figure 2(c)). Each entry corresponds to the range of a single rangeblock
and contains the space size of the disk postings along with the names of the first and
last term in the range. In a sparse index that we call search bucket, we maintain the
name and location of the term that occurs every 128KB along each rangeblock. The
search bucket allows us to only retrieve the exact 128KB that may contain a term
instead of the entire rangeblock. In our experience, any extra detail in rangeblock
indexing tends to significantly increase the maintenance overhead and lookup time
without considerable benefits in performance of query evaluation (Section 6.3). We use
a sorted array (termtable) to keep track of the termblocks that, respectively, store the
long terms of SRF or the append postings of URF (Figure 2(d)). We organize the term-
table as an array of descriptors. Each descriptor contains the term name, a pointer to
the memory postings, their size, the amount of free space at the last termblock on disk,
and a linked list of nodes called blocklist. Each node contains a pointer to a termblock
on disk.

The rangetable along with the termtable together implement the index table in our
system (Section 4). Initially, the termtable is empty and the rangetable contains a
single range that covers all possible terms. The inverted lists in memory that belong to
the same range are connected through a linked list. If the inverted lists after a merge
exceed the capacity of the respective rangeblock, we split the range into multiple half-
filled rangeblocks. Similarly, if we exceed the capacity of the last termblock, we allocate
new termblocks and fill them up. After a flush, we update the tables to accurately reflect
the postings that they currently hold. When the capacity of a termblock is exceeded,
we allocate a new termblock following one of three alternative approaches.

(1) Fragmented (FRG). Allocate a new termblock of size Bt to store the overflown
postings.

(2) Doubling (DBL). Allocate a new termblock of twice the current size to store the
new postings of the list.

(3) Contiguous (CNT). Allocate a termblock of twice the current size and relocate the
entire list to the new termblock to keep the list contiguous on disk. This is our
default setting.

For a term, the DBL allocation leads to number of termblocks that is logarithmic
with respect to the number of postings, while FRG makes it linear. In our evaluation,
we consider the implementation of the previous approaches over Proteus for both SRF
and URF (Section 6.5).

5.1. Memory Management and I/O

For every inverted list in memory, the hashtable stores into a posting descriptor in-
formation about the inverted list along with pointers to the term string and the list
itself (Figure 2(b)). For the postings of the inverted list, we allocate a simple byte array
whose size is doubled every time it fills up. When an inverted list is flushed to disk,
we free the respective posting descriptor, term string, and byte array. The efficiency of
these memory (de-)allocations is crucial for the system performance because they are
invoked extremely often.

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



Incremental Text Indexing for Fast Disk-Based Search 16:15

Initially, we relied on the standard libc library for the memory management of the
inverted lists. On allocation, the library traverses a list of free memory blocks (free
list) to find a sufficiently large block. On deallocation, the freed block is put back into
the free list and merged with adjacent free blocks to reduce external fragmentation.
We refer to this scheme as default. If a program runs for long time and uses a large
amount of memory, the free list becomes long and the memory fragmented, increasing
the management cost. In order to handle this issue, we use a single call to allocate
both the descriptor and term, or instead to deallocate them after an inverted list is
flushed to disk. The byte array is not included in the preceding optimization, because
we cannot selectively free or reallocate portions of an allocated chunk every time we
double the array size. We refer to this scheme as singlecall.

We further reduce the management cost by using a single call to get a memory
chunk (typically 4KB) and store the posting descriptors and term strings of a range. In
a chunk, we allocate objects (strings and descriptors) in a stack-like manner. Processor
cache locality is also improved when we store together the objects of each range. If
the current chunk has insufficient remaining space, we allocate an object from a new
chunk that we link to the current one. When we flush a range to disk, we traverse the
chunk list to free all the term strings and descriptors of the range. We refer to this
scheme as chunkstack.

In our prototype system, we store the disk-based index over the default file system.
Hence, we cannot guarantee the physical contiguity of disk files that are incrementally
created and extended over time. Disk blocks are allocated on demand as new data is
written to a storage volume, leading to file fragmentation across the physical storage
space. To prevent the file fragmentation caused by the system, we examined using
the preallocation of index files. Index building includes document parsing, which reads
documents from disk to memory (I/O intensive) and extracts their postings (CPU in-
tensive). Prefetching asynchronously retrieves the next part of a dataset (during the
processing of the dataset) to prevent the blocking of subsequent disk reads during
the processing of the dataset [Patterson et al. 1995]. We evaluate all the aforesaid
approaches of memory management and I/O optimization in Section 6.5.

6. PERFORMANCE EVALUATION

We compare the index build and search performance across a representative collection
of methods (from Table I) over Wumpus and Proteus. In our experiments we include
the performance sensitivity of the URF method across several configuration parame-
ters, storage, and memory allocation techniques, and other I/O optimizations. We also
explore the relative build performance of SRF and URF over different datasets.

6.1. Experimentation Environment

We execute our experiments on servers running the Debian distribution of Linux kernel
(v.2.6.18). Each server is equipped with one quad-core×86 2.33GHz processor, 3GB
RAM, and two SATA disks. We store the generated index and the document collection
on two different disks over the Linux ext3 file system. Different repetitions of an
experiment on the same server lead to negligible measurement variations (<1%).

We mostly use the full 426GB GOV2 standard dataset from the TREC terabyte
track [TREC 2006]. Additionally, we examine the scalability properties of our methods
with the 200GB dataset from Wikipedia [2008], and the first 1TB of the ClueWeb09
dataset from CMU [ClueWeb 2009]. We mainly use 7.2KRPM disks of 500GB capacity,
16MB cache, 9–9.25ms seek time, and 72–105MB/s sustained transfer rate. In some
experiments (ClueWeb, Section 6.6), we store the data on a 7.2KRPM SATA disk of
2TB capacity, 64MB cache, and 138MB/s sustained transfer rate.

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



16:16 G. Margaritis and S. V. Anastasiadis

We use the latest public code of Wumpus [2011] and set the threshold T equal to
1MB, as suggested for a reasonable balance between update and query performance.
We measure the build performance of HIM in Wumpus with activated partial flushing
and automated threshold adjustment [Büttcher and Clarke 2008]. In both systems we
set Mp = 1GB. In Proteus, unless otherwise specified, we set the parameter values
Bt = 2MB, Br = 32MB, Mf = 20MB, Fp = 20, Tt =1MB, and Ta = 256KB (Table VI,
Sections 4.4 and 6.4). The auxiliary structures of URF and SRF for GOV2 in Proteus
occupy less than 42MB in main memory. In particular, with URF (SRF) we found the
hashtable to occupy 4MB, the termtable and rangetable together 0.5MB, the block-
lists 0.25MB (0.12MB), and the range buckets 31.2MB (36.5MB).

To keep Wumpus and Proteus functionally comparable, we activate full stemming
across both systems (Porter’s option [Porter 1980]). Full stemming reduces terms to
their root form through suffix stripping. As a result, document parsing generates a
smaller index and takes longer time; also query processing often takes more time due
to the longer lists of some terms, and only approximately matches the searched terms
over the indexed documents. In Proteus we use an unoptimized version of Porter’s
algorithm as implemented in Zettair. This makes the parsing performance of Proteus
pessimistic and amenable to further optimizations. When we examine the performance
sensitivity of Proteus to configuration parameters, we use a less aggressive option
called light stemming, that is the default in Zettair.

6.2. Building the Inverted File

First we examine the build time of several methods implemented over Wumpus and
Proteus. In the case of GOV2, Hybrid Immediate Merge (HIM) keeps each short term
in one merge-based run, and each long term in one in-place and one merge-based run.
Hybrid Square Root Merge (HSM) keeps each short term in two merge-based runs, and
each long term in one in-place and two merge-based runs. Hybrid Logarithmic Merge
(HLM) has each short term over four merge-based runs, and each long term over one in-
place run and four merge-based runs. Nomerge fragments the postings across 42 runs.
SRF maintains the postings of each term in a unique rangeblock or termblock, while
URF keeps each infrequent term in one rangeblock and each frequent term in up to
one rangeblock and one termblock.

In Figure 3 we consider the build time of the methods NomergeW , HLMW , HSMW ,
and HIMW in Wumpus, and the methods HIMP , SRFP , and URFP as we implemented
them in Proteus. HIMW is the contiguous version of HIM (HIMC [Büttcher and Clarke
2008], Section 2, Appendix A) with all the applicable optimizations and the lowest build
time among the Wumpus variations of HIM as we experimentally verified. According to
the Wumpus implementation of contiguous and noncontiguous methods, the postings
of a long term are dynamically relocated to ensure storage on multiple segments of
size up to 64MB each [Wumpus 2011]. In order to ensure a fair comparison of different
methods on the same platform, we also implemented HIMC in Proteus (HIMP) with the
CNT storage allocation by default. The index size varied from 69GB for URFP down
to 60GB for SRFP and HIMP , due to about 10GB difference in the empty space within
the respective disk files.

The Wumpus methods take between 254min (baseline NomergeW ) and 523min
(HIMW ). HSMW and HLMW reduce the time of HIMW by 20% and 31%, respectively,
but fragment the merge-based index across two and four runs. This behavior is known
to substantially increase the I/O time of query processing, and consequently we do
not consider HSMW and HLMW any further [Büttcher and Clarke 2008; Margaritis
and Anastasiadis 2009]. The 531min of HIMP is comparable to the 523min required
by HIMW ; in part, this observation validates our HIM implementation over Proteus.
Instead, SRFP and URFP take 404min and 421min, respectively, which is 24% and

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



Incremental Text Indexing for Fast Disk-Based Search 16:17

Fig. 3. We consider the index building time for different indexing methods across Wumpus and Proteus, both
with full stemming. Over Wumpus, we examine Nomerge (NomergeW ), Hybrid Logarithmic Merge (HLMW ),
Hybrid Square Root Merge (HSMW ), and Hybrid Immediate Merge (HIMW ). Over Proteus, we include Hybrid
Immediate Merge (HIMP ), Selective Range Flush (SRFP ), and Unified Range Flush (URFP ). URFP takes
421min to process the 426GB of GOV2 achieving 18.1MB/s indexing throughput (see also Figure 9 for other
datasets).

21% below HIMP . URFP takes 4.2% more than SRFP to incrementally index GOV2,
although URFP is faster than SRFP in a different dataset (Section 6.6).

In Figure 3, we also break down the build time into parse, to read the datasets
and parse them into postings, and flush, to gather the postings and transfer them to
disk. HIMP reduces the flush time of HIMW from 303min to 253min, but HIMP has
longer parse time partly due to the unoptimized stemming. Instead, SRFP and URFP
only take 105min and 129min for flushing, respectively, thanks to their I/O efficiency.
Therefore, our methods reduce the flush time of HIMP by a factor of 2.0–2.4, and that
of HIMW by a factor of 2.4–2.9.

Somewhat puzzled by the longer parse time of Proteus, we recorded traces of disk
transfer activity during index building. Every time we retrieved new documents for
processing, we noticed substantial write activity with tens of several megabytes trans-
ferred to the index disk. Normally, parsing should only create read activity to retrieve
documents and no write activity at all. However, when we flush index postings to disk,
the system temporarily copies postings to the system buffer cache. In order to accommo-
date new documents in memory later during parsing, read requests clean dirty buffers
and free memory space. Overall, SRFP and URFP reduce by about a factor of 2–3 the
flush time of HIMP and HIMW , and achieve a reduction of the respective total build
time by 20–24%.

6.3. Query Handling

Next we examine the query time across different indexing methods and systems. In
our experiments, we use the GOV2 dataset and the first 1,000 queries of the Efficiency
Topics query set in the TREC 2005 terabyte track [TREC 2006]. We consider both
the alternative cases of having the buffer cache disabled and enabled during query
handling. As representative method of Wumpus we study the HIMW , while in Proteus
we consider HIMP , SRFP , and URFP .

In the latest publicly available version of Wumpus (but also the older versions),
we noticed that the implemented contiguous variation (HIMC) of HIM was constantly
crashing during search at a broken assertion. For that reason, in our search experi-
ments we used the noncontiguous variation instead (HIMNC [Büttcher et al. 2006b]).
Although the previous two Wumpus variations of HIM differ in their efficiency of index
building, they have similar design with respect to query handling. They both store

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



16:18 G. Margaritis and S. V. Anastasiadis

Fig. 4. We consider Hybrid Immediate Merge over Wumpus (HIMW ) or Proteus (HIMP ), along with Selective
Range Flush (SRFP ) and Unified Range Flush (URFP ) over Proteus: (a) We measure the average query time
with alternatively disabled and enabled system buffer cache across different queries in the two systems with
full stemming; (b) we look at the distribution of query time over the two systems with enabled buffer cache.

each short term in one run; however, HIMNC allows a long term to be stored in two
runs, while HIMC always stores it in one run. Given the long transfer time involved in
the retrieval I/O of long terms, we do not expect the aforesaid difference by one disk
positioning overhead to practically affect the query performance.

From Figure 4(a), caching activation reduces the query time of HIMW by 13%, and
by about 22–24% that of HIMP , SRFP , and URFP . Across both the caching scenarios,
HIMW over Wumpus takes about twice the average query time of the Proteus methods.
Given that our HIMP implementation is based on the published description of HIMW ,
we attribute this discrepancy to issues orthogonal to the indexing method, such as the
query handling and storage management of the search engine. In Proteus, the average
query times of HIMP , SRFP , and URFP remain within 2% of each other. Therefore,
both SRFP and URFP achieve the query performance of HIMP , even though they are
considerably more efficient in index building (Section 6.2).

We use measurement distributions to further compare the query time of the four
methods with enabled system caching (Figure 4(b)). Although the median query time
of Proteus lies in the range 246–272ms, that of HIMW is 1.378s, namely a factor of
5 higher. In fact, HIMW requires about 1s to handle even the shortest queries. Also,
the 99th percentile of HIMW is 68% higher than that of the Proteus methods. Instead,
the 99th percentiles of the Proteus methods lie within 2% each other, while the median
measurements lie within 10%. We conclude that HIMP , URFP , and SRFP are similar
in query performance, but faster by a factor of 2 on average with respect to HIMW .

6.4. Sensitivity of Unified Range Flush

Subsequently, we consider the sensitivity of the URF build performance to the range-
block size Br, flush memory Mf , append threshold Ta, and posting memory Mp.

Rangeblock Br. The rangeblock size Br determines the posting capacity of a range;
it directly affects the data amount transferred during range flushes and the I/O time
spent across range and term flushes. We observed the lowest build time for Br at
32–64MB (Figure 5(a)). Setting Br less than 32MB generates more ranges and raises
the total number of term and range flushes (Figure 5(b)). On the contrary, setting
Br higher than 64MB increases the amount of transferred data during range merges
(Figure 5(c)) leading to longer I/O. Our default value Br = 32MB balances the preceding
two trends into build time equal to 408min. A much larger Br practically emulates the
HIM method, for instance, with Br = 1GB (not shown) we measured 510min build time.

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



Incremental Text Indexing for Fast Disk-Based Search 16:19

Fig. 5. (a) Setting the rangeblock size Br below 32MB or above 64MB raises the build time of Unified Range
Flush. Increasing the Br tends to; (b) decrease the number of flushes; and (c) increase the data amount
transferred during merges. We use Proteus with light stemming.

Fig. 6. (a) Flushing more than a few tens of megabytes (Mf ) leads to longer build time for Unified Range
Flush (URF). This results from the more intense I/O activity across term and range flushes; (b) setting the
append threshold to Ta = 256KB minimizes the total I/O time of range and term flushes; (c) the build time of
range merge in URF decreases approximately in proportion to the increasing size of posting memory (Mp).
The Proteus system with light stemming is used.

For sensitivity comparison with SRF, we also measured the URF build time for the first
50GB of GOV2. With Br in the interval 8MB–256MB, we found the maximum increase
in build time equal to 9.1%, that is, almost 6× times lower than the respective 53.8%
of SRF (Table V).

Flush Memory Mf . The parameter Mf refers to the amount of bytes that we flush to
disk every time posting memory gets full (Figure 6(a)). Build time is reduced to 408min
if we set Mf = 20MB, namely 2% of the posting memory Mp = 1GB. Despite the Zipfian
distribution of postings [Büttcher et al. 2006b], setting Mf below 20MB leaves limited
free space to gather new postings at particular ranges (or terms) for efficient I/O. At
Mf much higher than 20MB, we end up flushing terms and ranges with small amounts
of new postings, leading to frequent head movement in appends and heavy disk traffic
in merges. If we set Mf = Mp (=1GB), we deactivate partial flushing and build time
becomes 632min (not shown).

Append Threshold Ta. This parameter specifies the minimum amount of accumulated
postings required during a merge to flush a term to the in-place index. It directly
affects the efficiency of term appends, and indirectly their relative frequency to range
flushes. In Figure 6(b) we observe that Ta = 256KB minimizes the URF build time.
If we increase Ta to 1MB (=Tt) we end up with build time higher by 6%. Unlike

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



16:20 G. Margaritis and S. V. Anastasiadis

Fig. 7. We examine the behavior of Unified Range Flush over Proteus with the following storage allocation
methods: (i) contiguous (CNT), (ii) doubling (DBL), and (iii) fragmented (FRG) with block sizes 1MB, 2MB,
8MB, and 32MB. (a) CNT achieves the lowest query time on average closely followed by DBL. We keep
the system buffer cache enabled across the different queries; (b) build time across the different allocation
methods varies within 5.7% of 386min (FRG/1MB and DBL); (c) unlike CNT and DBL, FRG tends to increase
the index size, especially for larger termblock.

Tt of SRF that permanently categorizes a term as long, Ta specifies the minimum
append size and tends to create larger merged ranges by including postings that SRF
would permanently treat as long instead. Overall, the URF performance shows little
sensitivity across reasonable values of Ta.

Posting Memory Mp. The parameter Mp specifies the memory space that we reserve
for temporary storage of postings. Smaller values of Mp increase the cost of range
flushes, because they enforce frequent range flushes and limit the gathering of postings
from frequent terms in memory. As we increase Mp from 128MB to 1GB in Figure 6(c),
the time of range merge drops almost proportionally, resulting in substantial decrease
of the total build time. Further increase of Mp to 2GB only slightly reduces the build
time, because at Mp = 1GB most time (59.3%) is already spent on parsing. As default
value in our experiments we set Mp = 1GB.

6.5. Storage and Memory Management

Next we examine the effect of storage allocation to the build and query time of URF.
Based on the description of Section 5, we consider FRG with alternative termblock sizes
1MB, 2MB, 8MB, and 32MB (respectively denoted as FRG/1MB, FRG/2MB, FRG/8MB,
FRG/32MB), and also the DBL and CNT allocation methods. In Figure 7(a) we show
the average CPU and I/O time of query processing in a system with activated buffer
cache. The average query time varies from 1649min with FRG/32MB to 1778min with
FRG/1MB, while it drops to 1424min by DBL and 1338min by CNT. Essentially, CNT
reduces the query time of FRB/1MB by 25% and of DBL by 6%. The preceding variations
are mainly caused by differences in I/O time given that the CPU time remains almost
constant at 622min (<47% of total). Unlike query time, from Figure 7(b) we notice the
build time only slightly varies from 386min for both FRG/1MB and DBL to 408min
for CNT (5.7% higher). In these measurements, the flush time is about 40% of the
total build time. Due to differences in the empty space of termblocks, the index size
varies from 53GB for FRG/1MB to 355GB for FRG/32MB, and 70GB for DBL and CNT
(Figure 7(c)). We conclude that our CNT default setting is a reasonable choice because
it achieves improved query time at low added build time or index size.

In Section 5.1 we mentioned three alternative approaches to manage the memory of
postings: (i) default (D), (ii) singlecall (S), and (iii) chunkstack (C). The methods differ
in terms of function invocation frequency, memory fragmentation, and bookkeeping
space overhead. Memory allocation affects the time spent on dataset parsing when

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



Incremental Text Indexing for Fast Disk-Based Search 16:21

Fig. 8. We consider three methods of memory allocation during index building by Unified Range Flush:
(i) default (D), (ii) singlecall (S), and (iii) chunkstack (C). The sensitivity of build time to memory management
is higher (up to 8.6% decrease with C) for larger values of Mp. We use Proteus with light stemming.

Table VII. Effect of Alternative Optimizations to the Query and Build Time of Unified Range Flush

Average Build and Query Time - Unified Range Flush

Memory and I/O Optimizations
Total Parse Flush Time Query
Build Time Ranges Terms W/out W/Cache
(min) (min) (min) (min) (ms) (ms)

None 543 374 124 40 2082 1537
Preallocation 534 373 112 45 1728 1316
Preallocation+Prefetching 429 260 118 47 1724 1318
Preallocation+Prefetching+Chunkstack 408 242 116 48 1726 1315

Preallocation reduces the average query time, while prefetching and chunkstack reduce the build time.

we add new postings to memory and the duration of term and range flushes when we
remove postings. In Figure 8 we consider the three allocation methods with URF across
different values of posting memory. Memory management increasingly affects build
time as posting memory grows from 512MB to 2GB. More specifically, the transition
from the default policy to chunkstack reduces build time by 3.4% for Mp = 512MB, 4.7%
for Mp = 1GB, and 8.6% for Mp = 2GB. Therefore, larger amounts of memory space
require increased efficiency in memory management to accelerate index building.

In Table VII we compare the effects of several memory and I/O optimizations to the
build and search time of SRF. File preallocation of the index lowers by 14–17% the
average query time as a result of reduced storage fragmentation at the file system
level. For aggressive prefetching, we increase the Linux readahead window to 1MB,
making it equal to the size of the parsing buffer. Thus, during the processing of 1MB
text, we read the next 1MB from disk in the background. As a result, the build time
drops by 20% from 534min to 429min. When we activate the chunkstack method in
memory management, build time further drops by 5% from 429min to 408min. We have
all these optimizations activated throughout the experimentation with Proteus.

6.6. Scalability across Different Datasets

Finally, we measure the total build time of the CNT variants of SRF and URF for three
different datasets: ClueWeb09 (first 1TB), GOV2 (426GB), and Wikipedia (200GB). In
our evaluation, we use the default parameter values shown in Table VI. In Figures 9(a)
and 9(b) we break down into parse and flush time the SRF and URF build time for
the ClueWeb09 dataset. Even though SRF better balances the flush time of ranges and
terms against each other, URF actually reduces the total build time of SRF by 7% from

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



16:22 G. Margaritis and S. V. Anastasiadis

Fig. 9. We show the scaling of build time with Selective Range Flush (SRF) and Unified Range Flush (URF).
We use the ClueWeb09 (first 1TB), GOV2 (426GB), and Wikipedia (200GB) datasets over Proteus with light
stemming. URF takes 53.5min (7%) less time for ClueWeb09, about the same for Wikipedia, and 16.4min
(4%) more for GOV2 in comparison to SRF.

815.8min to 762.3min. This improvement is accompanied by a respective reduction of
the total flush time by 81.5min (23%) from 353.2min to 271.7min.

In Figures 9(c) and 9(d) we examine the scaling of build time for the GOV2 dataset.
SRF reduces the build time of URF by 16.4min (4%) from 420.8min to 404.4min.
The total number of indexed postings is 20.58bn in GOV2 (426GB) and 27.45bn in
ClueWeb09 (1TB). However, GOV2 has about half the text size of ClueWeb09, and
the index building of GOV2 takes almost half the time, spent for ClueWeb09. In fact,
the parsing of GOV2 seems to take more than 70% of the total build time, partly due
to cleaning of pages written during flushing (Section 6.2). In the Wikipedia dataset,

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



Incremental Text Indexing for Fast Disk-Based Search 16:23

parsing takes about 84–85% of the total build time, but both URF and SRF require the
same time (about 118.5min) to build the index (Figures 9(e) and 9(f)).

Across Figure 9, the total build time of URF and SRF (e.g., ClueWeb09 and GOV2)
demonstrates a nonlinearity mainly caused by the range flush time rather than the
parsing and term flushing. We explored this issue by using the least-squares method
to approximate the build time of GOV2 as a function of the number of postings. In
our regression, we alternatively consider the linear function f (x) = a1 + b1 · x and
the polynomial function f (x) = a2 · xb2 . Using the coefficient of determination R2 to
quantify the goodness of fit, we find that both the total build time and the time of range
flushing are accurately tracked by the polynomial function [Jain 1991]. By contrast,
the respective times of parsing and term flushing achieve good quality of fit with linear
approximation.

7. RELATED WORK

We examine related literature in organization of inverted lists, query evaluation, hybrid
incremental indexing, real-time search, and scalable indexing for Web analytics.

List Organization. Modern search engines typically keep their inverted lists com-
pressed on disk in order to reduce the space occupied by the inverted index and the
time required for query evaluation. Index compression adds extra computation cost, but
the gain of reduced data traffic to and from disk is relatively higher [Zobel and Moffat
2006; Lester et al. 2006]. Each new document added to the collection is assigned a mono-
tonically increasing identifier. Thus, an inverted list consists of document identifiers
sorted in increasing order (document ordered) and can be represented as a sequence of
differences between successive document identifiers (d-gaps). The differences are usu-
ally smaller than the initial identifiers and can be efficiently encoded with an integer
coding scheme [Zobel and Moffat 2006]. Document-ordered inverted lists are widely
used for incremental index maintenance because they are updated simply by append-
ing new postings at their end [Lester et al. 2008]. Depending on the query type and the
system performance, query evaluation may require to retrieve in memory the entire
document-ordered inverted list of each query term [Lester et al. 2006]. Alternatively,
an inverted list is sorted according to decreasing frequency (frequency ordered) of term
occurrence in a document or decreasing contribution (impact ordered) to the query-
document similarity score [Zobel and Moffat 2006]. Such organizations allow inverted
lists to be retrieved in blocks rather than in their entirety, making their contiguous
storage relevant for the individual blocks. In comparison to a document-ordered list
organization, however, the alternative organizations require additional cost (e.g., for
I/O or decoding) to handle index updates and complex queries (e.g., term proximity or
Boolean queries) [Zobel and Moffat 2006; Zhu et al. 2008].

Query Evaluation. Query evaluation strategies calculate the similarity of the indexed
documents to a query by evaluating the contribution of each query term to all document
scores (term-at-a-time), all query terms to a single document score (document-at-a-
time), or the postings with highest impact to document scores (score-at-a-time) [Anh
and Moffat 2006]. Traditionally, document-at-a-time evaluation is commonly used in
Web search because it more efficiently handles context-sensitive queries for which the
relation (e.g., proximity) among terms is crucial [Broder et al. 2003]. Given that a
high percentage of users (e.g., 80%) only examine a few tens of relevant documents,
search engines may prune their index to quickly compute the first batches of results
for popular documents and keywords. Thus, a two-tier search architecture directs all
incoming queries to a first-tier pruned index, and only directs to a second-tier full index
those queries not sufficiently handled by the first tier [Ntoulas and Cho 2007]. In order
to overcome the bottleneck of disk-based storage, pruning of an impact-sorted index

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



16:24 G. Margaritis and S. V. Anastasiadis

allows inverted lists to be stored in memory for significantly improved performance of
score-at-a-time query evaluation [Strohman and Croft 2007].

Hybrid Methods. One early hybrid approach hashed the short terms accumulated
in memory into fixed-size disk regions called buckets. When a bucket filled up, the
term with the most postings was categorized as long and stored at a separate disk
region from that point on [Tomasic et al. 1994]. A recent hybrid method separates the
terms into frequent and nonfrequent ones (according to their appearance in query logs)
and maintains them in separate subindices of multiple partitions each [Gurajada and
Kumar 2009]. Frequent terms use a merge strategy designed for better query perfor-
mance, while infrequent terms rely on a merge strategy that attains better update
performance. Block-based maintenance of term ranges was previously used to build
in batch mode a data structure (half-inverted index) for the fast processing of certain
types of advanced queries [Celikik and Bast 2009].

In previous work, we described the Selective Range Flush (SRF) method and ex-
perimentally demonstrated some of its performance benefits in build time and term
retrieval I/O [Margaritis and Anastasiadis 2009]. In the present manuscript, we fur-
ther motivate our study by measuring the I/O part of query time along with the effect
of caching and stop-words, and demonstrate the tuning effort needed by SRF to achieve
performance efficiency. Then, we propose the Unified Range Flush (URF) method for
efficient index maintenance that is conceptually simpler, achieves robust performance
with less tuning, and is amenable to complexity analysis. We also investigate the perfor-
mance effects of several storage and memory allocation methods and examine the scal-
ing properties of our methods across three different standard Web datasets. Finally, we
provide a worst-case complexity analysis of the I/O cost required by URF index building.

Another hybrid method uses partial flushing to delay merges of short terms by only
flushing the long terms with occupied memory that exceeds an automatically adjusted
threshold [Büttcher and Clarke 2008]. When transfer efficiency drops, then all long and
short postings are flushed from memory to disk. Instead, we free a small amount of
memory space every time memory gets full by selectively flushing terms based on their
size in memory. Recent research also considers document deletions from the indexed
document set [Guo et al. 2007]. With our work, we radically simplify the general
problem of online index maintenance by keeping the inverted lists on blocks rather
than contiguous files. Other previous work has examined the storage of inverted lists
onto collections of blocks with size up to 64KB [Zobel et al. 1993; Tomasic et al. 1994;
Brown et al. 1994]. Those studies were done with architectural assumptions of two
decades ago. Consequently, they undervalued the benefits of block-based maintenance
due to reported overheads related to query processing and unused storage space.

Real-Time Search. Given the high cost of incremental updates and their interference
with concurrent search queries, a main index can be combined with a smaller index
that is frequently rebuilt (e.g., hourly) and a Just-in-Time Index (JiTI) [Lempel et al.
2007]. JiTI provides (nearly) instant retrieval for content that arrives between rebuilds.
Instead of dynamically updating the index on disk, it creates a small inverted file for
each incoming document and chains together the inverted lists of the same term among
the different documents. Earlier work on Web search also pointed out the need to update
an inverted file with document insertions and deletions in real time [Chiueh and Huang
1999]. Instead of a word-level index, the Codir system uses a single bit to keep track of
multiple term occurrences in a document block (partial inverted index) and processes
search queries by combining a transient memory-based index of recent updates with a
permanent disk-based index.

Twitter commercially provided the first real-time search engine, although other com-
panies (e.g., Google, Facebook) are also launching real-time search features [Geer 2010].

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



Incremental Text Indexing for Fast Disk-Based Search 16:25

Real-time search at Twitter is recently supported by the Earlybird system that con-
sists of inverted indices maintained in the main memory of multiple machines [Busch
et al. 2012]. Earlybird reuses query evaluation code from the Lucene search engine
[McCandless et al. 2010], but also implements the term vocabulary as an optimized
hashtable and the inverted list as a collection of document-ordered segments with
increasing size. The authors state that the topic of real-time search appears largely
unexplored in the academic literature [Busch et al. 2012].

Web Analytics. In comparison to the batch scheme used until recently, the incremen-
tal update scheme of Percolator from Google reduces the average latency of document
processing by a factor of 100, although it is still considered insufficient for real-time
search [Peng and Dabek 2010; Busch et al. 2012]. Stateful incremental processing has
also been proposed as a general approach to improve the efficiency of Web analytics
over large-scale datasets running periodically over MapReduce [Dean and Ghemawat
2008; Logothetis et al. 2010]. A different study shows that the throughput achieved by
a method optimized for construction of inverted files across a cluster of multicore ma-
chines is substantially higher than the best performance achieved by algorithms based
on MapReduce [Wei and Jaja 2012]. Earlier work on batch index building proposed
a software pipeline organization to parallelize the phases of loading the documents,
processing them into postings, and flushing the sorted postings to disk as a sorted
file [Melnik et al. 2001].

Techniques developed for incremental index maintenance of inverted files are ap-
plicable to the more general problem of maintaining online key-value pairs across
memory and disk. The Bigtable system accumulates multidimensional data values in
multiple tables across memory and disk [Chang et al. 2006]; when a size threshold
is reached, it transfers tables from memory to disk and periodically merges multiple
tables on disk. The Anvil system manages key-value pairs on disk applying a merge-
based method similar to the one described by Lester et al. [2005] and Mammarella et al.
[2009]. A similar method is also used by the Lucene open-source text indexing software
[McCandless et al. 2010], the Zoie variation of Lucene employed by the Linkedin social
network [Zoie 2008], and the Spyglass metadata search engine [Leung et al. 2009]. Fi-
nally, Lucene provides a feature called near-real-time search, that immediately flushes
to disk the postings of newly added (or deleted) documents so that they are included in
subsequent search queries without additional buffering delay.

8. CONCLUSIONS AND FUTURE WORK

We investigate the problem of incremental maintenance of a disk-based inverted file.
Our objective is to improve both the search latency and index building time at low re-
source requirements. We propose a simple yet innovative disk organization of inverted
files based on blocks and introduce two new incremental indexing methods, the Se-
lective Range Flush (SRF) and Unified Range Flush (URF). We implemented our two
methods in the Proteus prototype that we built. We extensively examine their efficiency
and performance robustness using three different datasets of size up to 1TB. SRF re-
quires considerable tuning effort across different parameter combinations to perform
well. In comparison to SRF, URF has similar or even better performance, while it is
also simpler, easier to tune, and amenable to I/O complexity analysis. Both in Proteus
and the existing Wumpus system, we experimentally examine the search performance
of the known Hybrid Immediate Merge (HIM) method with partial flushing and auto-
matic threshold adjustment. Our two methods achieve the same search latency as HIM
in Proteus while reducing into half the search latency of HIM in Wumpus. Additionally,
our methods reduce by a factor of 2–3 the I/O time of HIM during index building and
lower the total build time by 20% or more. Based on the performance benefits of our

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



16:26 G. Margaritis and S. V. Anastasiadis

methods, in our future work we plan to investigate issues related to adaptive caching,
concurrency control, automatic failover, parsing efficiency, and handling of document
modifications and deletions.

APPENDIX

A. COMPLEXITY ANALYSIS OF UNIFIED RANGE FLUSH

For complexity comparison with existing methods of index building, we estimate the
worst-case asymptotic I/O cost of our approach. We focus on the URF method because
the simple flushing of the largest ranges makes the analysis more tractable. For sim-
plicity, we assume that a termblock is not relocated when overflown. During index
building, URF allows a term list to be split across the in-place and the merge-based
indices. This approach is also followed by the noncontiguous methods of hybrid index
maintenance [Büttcher et al. 2006b]. Accordingly, if the size of a short list during a
merge exceeds the threshold value T , Büttcher et al. move the postings of the term
that participate in the merge to the in-place index. They define as L̂(N, T ) the number
of postings accumulated in the in-place index and P̂(N, T ) the number of postings in
the merge-based index for a collection of N postings. Next, they provide the following
asymptotic estimates:

L̂(N, T ) = N − c · T (1−1/a) · N1/a,

P̂(N, T ) = c · T (1−1/a) · N1/a,

c = 1

(a − 1)(γ + 1
a−1 )1/a

. (3)

The parameter γ ≈ 0.577216 is the Euler-Mascheroni constant, while a is the param-
eter of Zipf distribution that models the frequency of term occurrences.

In Eq. (3), the counts of short and long postings result from the terms distribution
rather than the method used to maintain each part of the index on disk. Therefore,
if we replace T with the append threshold Ta, the previous estimates also apply to
the number of postings stored in the rangeblocks and termblocks of URF. In order
to indicate the intuition of URF in our analysis, we use the symbols Pappend(N) and
Pmerge(N) instead of the respective L̂(N, T ) and P̂(N, T ).

For a collection of N postings, the total I/O cost Ctotal to build the index with URF is
the sum of costs for appends, Cappend, and merges, Cmerge:

Ctotal(N) = Cappend(N) + Cmerge(N)
= kappend(N) · cappend(N) + kmerge(N) · cmerge(N), (4)

where kappend() and kmerge() are the respective numbers of appends and merges, whereas
cappend() and cmerge() are the respective costs per append and merge.

If a list participates in a range merge and has size greater than Ta, we append the
postings of the list to a termblock on disk. After N postings have been processed, we
assume that each append takes a fixed amount of time that only depends on the disk
geometry and the threshold Ta

cappend(N) ≈ cwrite(Ta) = cappend, (5)

where cwrite() approximates the delay of a disk write. For a collection of N postings, each
append flushes at least Ta postings to a termblock and the total number of appends
does not exceed �Pappend(N)/Ta�:

kappend(N) ≤
⌊

Pappend(N)
Ta

⌋
=

⌊
N · 1

Ta
− N1/a · c

T 1/a
a

⌋
∈ O(N). (6)

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



Incremental Text Indexing for Fast Disk-Based Search 16:27

Instead, a range merge involves the following steps: (i) read the rangeblock to mem-
ory, (ii) merge the disk postings with new postings in memory, and (iii) write the
merged postings back to the rangeblock on disk. If the rangeblock overflows, we
split it into two half-filled rangeblocks. Since a rangeblock begins 50% filled and
splits when 100% full, we assume that a rangeblock is 75% full on average. Thus,
in a posting collection of size N, the cost of a range merge can be estimated as
cread(0.75 · Br) + cmerge(0.75 · Br + p) + cwrite(0.75 · Br + p), where p is the number of
new postings accumulated in memory for the range. The cmerge() refers to processor ac-
tivity mainly for string comparisons and memory copies; we do not consider it further
because we focus on disk operations. From the merged postings of amount 0.75 · Br + p,
some will be moved to termblocks because they exceed the threshold Ta. Since the
number p of new postings is usually small relative to the amount of merged postings,
we can also omit p and approximate cmerge(N) with a constant:

cmerge(N) ≈ cread(0.75 · Br) + cwrite(0.75 · Br) = cmerge. (7)

To process a collection of N postings, we do �N/Mf � flushes. During the i-th flush,
we perform mi range merge operations to flush a total of Mf postings. We first estimate
an upper bound for mi, before we derive an upper bound for the total number of merge
operations kmerge(N). Suppose the posting memory is exhausted for i-th time and we
need to flush Mf postings. The URF method flushes the minimum number of ranges
mi needed to transfer Mf postings to disk.

In the worst-case analysis, we aim to maximize mi. For Mp postings and Ri ranges
currently in memory, mi is maximized if the postings in memory are equally distributed
across all ranges. Before a range is flushed to disk, the respective number of new
postings accumulated in memory for the range has to reach pi = Mp/Ri. Then, the
number of ranges mi flushed during the i-th flush operation is equal to mi = Mf

pi
= Mf ·Ri

Mp
.

Just before the i-th flush, a total of (i − 1) · Mf postings were written to disk. From
them, Pmerge((i − 1) · Mf ) postings are stored over rangeblocks. Since each rangeblock
stores an average of 0.75 · Br postings, the number of rangeblocks on disk is Pmerge((i −
1) · Mf )/(0.75 · Br). The number of ranges in the rangetable just before the i-th flush
will be equal to the number of rangeblocks on disk, because each range is associated
with exactly one rangeblock on disk: Ri = Pmerge((i−1)·Mf )

0.75·Br
.

Based on the preceding equations of mi and Ri, for a collection of N postings we can
derive an upper bound for the total number of range merges:

kmerge(N) =
(# flushes)∑

i=1

(# merges during i-th flush) =
�N/Mf �∑

i=1

mi

=
�N/Mf �∑

i=1

(i − 1)1/a · T (1−1/a)
a · Mf

1+1/a · c
0.75 · Mp · Br

≤ T (1−1/a)
a · Mf

1+1/a · c
0.75 · Mp · Br

·
�N/Mf �∑

i=1

i1/a (8)

≤ T (1−1/a)
a · Mf

1+1/a · c
0.75 · Mp · Br

·
⌈

N
Mf

⌉1+1/a

≈ T (1−1/a)
a · c

0.75 · Mp · Br
· N1+1/a ∈ O(N1+1/a). (9)

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



16:28 G. Margaritis and S. V. Anastasiadis

According to Eqs. (4)–(7) and (9), the total I/O cost of index building has the following
upper bound:

Ctotal(N) ∈ O(N1+1/a). (10)

From Table I, the upper-bound index building cost of Eq. (10) makes URF asymptoti-
cally comparable to HIM [Büttcher et al. 2006b]. Additionally, the approach of URF to
store the postings of each term across up to two subindices makes the I/O cost of term
retrieval constant.

A.1. Special Case

To cross-validate our result, we use a special case of URF to emulate the behavior of
HIM [Büttcher et al. 2006b]. We set Mflush = Mtotal to force a full flush when we run
out of memory. We also append to termblocks any list with more than Ta postings and
choose a large Br value for URF to approximate the sequential merging of HIM. Each
range merge transfers 0.75 · Br postings to disk. For collection size N, the total amount
of postings written to disk across kmerge(N) merges follows from Eq. (8):

Pmerge written(N) = kmerge(N) · (0.75 · Br)

= T 1−1/a
a · Mp

1+1/a · c · 0.75 · Br

0.75 · Mp · Br
·

�N/Mp�∑
i=1

i1/a

=
�N/Mp�∑

i=1

c · T 1−1/a
a (i · Mp)1/a

≤ c · T 1−1/a
a · N1+1/a

Mp
. (11)

After we add the linear I/O cost from appends (Eqs. (5) and (6)), and replace Ta with T
at the right part of inequality (11), we estimate the worst-case cost of HIM to be that
of Eq. (6) by Büttcher et al. [2006b]. Thus we asymptotically confirm that the behavior
of HIM is approximated as special case of the URF method.

ACKNOWLEDGMENTS

The authors are thankful to the anonymous reviewers for their constructive comments that helped improve
the manuscript. They would also like to thank Argyris Kalogeratos for his detailed feedback on an earlier
draft. Access to the infrastructure of the Information Retrieval Facility (IRF) of Vienna, Austria, for experi-
mentation purposes is gratefully acknowledged. Permission to use the ClueWeb09 Text Research Collections
has been granted by Organization Agreement with Carnegie Mellon University.

REFERENCES

Vo Ngoc Anh and Alistair Moffat. 2006. Pruned query evaluation using pre-computed impacts. In Proceedings
of the 29th Annual ACM SIGIR International Conference on Research and Development in Information
Retrieval. 372–379.

Arvind Arasu, Junghoo Cho, Hector Garcia-Molina, Andreas Paepcke, and Sriram Raghavan. 2001. Searching
the web. ACM Trans. Internet Technol. 1, 1, 2–43.

Ricardo Baeza-Yates, Carlos Castillo, Flavio Junqueira, Vassilis Plachouras, and Fabrizio Silvestri. 2007a.
Challenges on distributed web retrieval. In Proceedings of the IEEE International Conference on Data
Engineering. 6–20.

Ricardo Baeza-Yates, Aristides Gionis, Flavio Junqueira, Vanessa Murdock, Vassilis Plachouras, and Fabrizio
Silvestri. 2007b. The impact of caching on search engines. In Proceedings of the 30th Annual ACM SIGIR
International Conference on Research and Development in Information Retrieval. 183–190.

Luiz Andre Barroso, Jeffrey Dean, and Urs Holzle. 2003. Web search for a planet: The Google cluster
architecture. IEEE Micro 23, 2, 22–28.

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



Incremental Text Indexing for Fast Disk-Based Search 16:29

Alexandros Batsakis, Randal Burns, Arkady Kanevsky, James Lentini, and Thomas Talpey. 2008. AWOL:
An adaptive write optimizations layer. In Proceedings of the USENIX Conference on File and Storage
Technologies. 67–80.

Truls A. Bjorklund, Michaela Gotz, and Johannes Gerhke. 2010. Search in social networks with access
control. In Proceedings of the International Workshop on Keyword Search on Structured Data. ACM
Press, New York, 4:1–4:6.

Allan Borodin and Ran El-Yaniv. 1998. Online Computation and Competitive Analysis. Cambridge University
Press, Cambridge, UK.

Eric A. Brewer. 2005. Combining systems and databases: A search engine retrospective. In Readings in
Database Systems, 4th Ed., Joseph M. Hellerstein and Michael Stonebraker, Eds., MIT Press, Cambridge,
MA, 711–724.

Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Zien. 2003. Efficient query
evaluation using a two-level retrieval process. In Proceedings of the ACM Conference on Information
and Knowledge Management. 426–434.

Eric W. Brown, James P. Callan, and W. Bruce Croft. 1994. Fast incremental indexing for full-text information
retrieval. In Proceedings of the 20th International Conference on Very Large Data Bases. 192–202.

Michael Busch, Krishna Gade, Brian Larson, Patrick Lok, Samuel Luckenbill, and Jimmy Lin. 2012. Early-
bird: Real-time search at twitter. In Proceedings of the IEEE International Conference on Data Engi-
neering. 1360–1369.

Stefan Buttcher and Charles L. A. Clarke. 2008. Hybrid index maintenance for contiguous inverted lists. Inf.
Retr. 11, 3, 197–207.

Stefan Buttcher, Charles L. A. Clarke, and Brad Lushman. 2006a. A hybrid approach to index maintenance
in dynamic text retrieval systems. In Proceedings of the European Conference on IR Research. 229–240.

Stefan Buttcher, Charles L. A. Clarke, and Brad Lushman. 2006b. Hybrid index maintenance for growing
text collections. In Proceedings of the 29th Annual ACM SIGIR International Conference on Research
and Development in Information Retrieval. 356–363.

Marjan Celikik and Hannah Bast. 2009. Fast single-pass construction of a half-inverted index. In Proceed-
ings of the International Symposium on String Processing and Information Retrieval. Lecture Notes in
Computer Science, vol. 5721, Springer, 194–205.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber. 2006. Bigtable: A distributed storage system for struc-
tured data. In Proceedings of the USENIX Symposium on Operating Systems Design and Implementation.
205–218.

Chun Chen, Feng Li, Beng Chin Ooi, and Sai Wu. 2011. TI: An efficient indexing mechanism for real-time
search on tweets. In Proceedings of the ACM SIGMOD International Conference on Management of Data.
649–660.

Tzicker Chiueh and Lan Huang. 1999. Efficient real-time index updates in text retrieval systems. Tech. rep.
66, ECSL, Stony Brook University, Stony Brook, NY.

ClueWeb. 2009. The ClueWeb09 dataset. http://boston.lti.cs.cmu.edu/Data/clueweb09/.
Doug Cutting and Jan Pedersen. 1990. Optimizations for dynamic inverted index maintenance. In Pro-

ceedings of the 13th Annual ACM SIGIR International Conference on Research and Development in
Information Retrieval. 405–411.

Jeffrey Dean and Luiz Andre Barroso. 2013. The tail at scale. Comm. ACM 56, 2, 74–80.
Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified data processing on large clusters. Comm.

ACM 51, 1, 107–113.
David Geer. 2010. Is it really time for real-time search? Comput. 43, 3, 16–19.
Ruijie Guo, Xueqi Cheng, Hongbo Xu, and Bin Wang. 2007. Efficient on-line index maintenance for dynamic

text collections by using dynamic balancing tree. In Proceedings of the ACM Conference on Information
and Knowledge Management. 751–759.

Sairam Gurajada and Sreenivasa Kumar. 2009. On-line index maintenance using horizontal partitioning.
In Proceedings of the ACM Conference on Information and Knowledge Management. 435–444.

Steffen Heinz and Justin Zobel. 2003. Efficient single-pass index construction for text databases. J. Amer.
Soc. Inf. Sci. Technol. 54, 8, 713–729.

Jun Hirai, Sriram Raghavan, Hector Garcia-Molina, and Andreas Paepcke. 2000. WebBase: A repository of
web pages. Comput. Netw. 33, 1–6, 277–293.

Raj Jain. 1991. The Art of Computer Systems Performance Analysis. Wiley.
Myeongjae Jeon, Yuxiong He, Sameh Elnikety, Alan L. Cox, and Scott Rixner. 2013. Adaptive parallelism for

web search. In Proceedings of the European Conference on Computer Systems. 155–168.

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



16:30 G. Margaritis and S. V. Anastasiadis

Florian Leibert, Jake Mannix, Jimmy Lin, and Babak Hamadani. 2011. Automatic management of parti-
tioned, replicated search services. In Proceedings of the ACM Symposium on Cloud Computing. 27:1–
27:8.

Ronnu Lempel, Yosi Mass, Shila Ofek-Koifman, Yael Petruschka, Dafna Sheinwald, and Ron Sivan. 2007.
Just in time indexing for up to the second search. In Proceedings of the ACM Conference on Information
and Knowledge Management. 97–106.

Nicholas Lester, Alistair Moffat, and Justin Zobel. 2005. Fast on-line index construction by geometric parti-
tioning. In Proceedings of the ACM Conference on Information and Knowledge Management. 776–783.

Nicholas Lester, Alistair Moffat, and Justin Zobel. 2008. Efficient online index construction for text databases.
ACM Trans. Database Syst. 33, 3, 1–33.

Nicholas Lester, Justin Zobel, and Hugh Williams. 2006. Efficient online index maintenance for contiguous
inverted lists. Inf. Process. Manag. 42, 4, 916–933.

Nicholas Lester, Justin Zobel, and Hugh Williams. 2004. In-place versus re-build versus re-merge: Index
maintenance strategies for text retrieval systems. In Proceedings of the Australasian Computer Science
Conference. 15–23.

Andrew W. Leung, Minglong Shao, Timothy Bisson, Shankar Pasupathy, and Ethan L. Miller. 2009. Spyglass:
Fast, scalable metadata search for large-scale storage systems. In Proceedings of the USENIX Conference
on File and Storage Technologies. 153–166.

Lipyeow Lim, Min Wang, Sriram Padmanabhan, Jeffrey Scott Vitter, and Ramesh Agarwal. 2003. Dynamic
maintenance of web indexes using landmarks. In Proceedings of the Conference on World Wide Web.
102–111.

Dionysios Logothetis, Christopher Olston, Benjamin Reed, Kevin C. Webb, and Keb Yocum. 2010. Stateful
bulk processing for incremental analytics. In Proceedings of the ACM Symposium on Cloud Computing.
51–62.

Mike Mammarella, Shant Hovsepian, and Eddie Kohler. 2009. Modular data storage with Anvil. In Proceed-
ings of the ACM Symposium on Operating Systems Principles. 147–160.

Giorgos Margaritis and Stergios V. Anastasiadis. 2009. Low-cost management of inverted files for online
full-text search. In Proceedings of the ACM Conference on Information and Knowledge Management.
455–464.

Michael Mccandless, Erik Hatcher, and Otis Gospodnetic. 2010. Lucene in Action. Manning Publications,
Stamford, CT.

Sergey Melnik, Sriram Raghavan, Beverly Yang, and Hector Garcia-Molina. 2001. Building a distributed
full-text index for the web. ACM Trans. Inf. Syst. 19, 3, 217–241.

Alexandros Ntoulas and Junghoo Cho. 2007. Pruning policies for two-tiered inverted index with correctness
guarantee. In Proceedings of the 30th Annual ACM SIGIR International Conference on Research and
Development in Information Retrieval. 191–198.

R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel Stodolsky, and Jim Zelenka. 1995. Informed
prefetching and caching. In Proceedings of the ACM Symposium on Operating Systems Principles. 79–
95.

Daniel Peng and Frank Dabek. 2010. Large-scale incremental processing using distributed transactions and
notifications. In Proceedings of the USENIX Symposium on Operating Systems Design and Implemen-
tation. 251–264.

Martin F. Porter. 1980. An algorithm for suffix stripping. Program 14, 3, 130–137.
Mohit Saxena, Michael M. Swift, and Yiying Zhang. 2012. FlashTier: A lightweight, consistent and durable

storage cache. In Proceedings of the ACM European Conference on Computer Systems. 267–280.
Sam Shah, Craig A. N. Soules, Gregory R. Ganger, and Brian D. Noble. 2007. Using provenance to aid in

personal file search. In Proceedings of the USENIX Annual Technical Conference. 171–184.
Trevor Strohman and W. Bruce Croft. 2007. Efficient document retrieval in main memory. In Proceedings

of the 30th Annual ACM SIGIR International Conference on Research and Development in Information
Retrieval (SIGIR’07). 175–182.

Anthony Tomasic, Hector Garcia-Molina, and Kurt Shoens. 1994. Incremental updates of inverted lists for
text document retrieval. In Proceedings of the ACM SIGMOD International Conference on Management
of Data. 289–300.

Trec. 2006. TREC terabyte track. National Institute of Standards and Technology. http://trec.nist.gov/
data/terabyte.html.

Zheng Wei and Joseph Jaja. 2012. An optimized high-throughput strategy for constructing inverted files.
IEEE Trans. Parallel Distrib. Syst. 23, 11, 2033–2044.

Wikipedia. 2008. The wikipedia dataset. http://static.wikipedia.org/downloads/2008-06/en/.

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.



Incremental Text Indexing for Fast Disk-Based Search 16:31

Hugh E. Williams, Justin Zobel, and Dirk Bahle. 2004. Fast phrase querying with combined indexes. ACM
Trans. Inf. Syst. 22, 4, 573–594.

Wumpus. 2011. Wumpus search engine. http://www.wumpus-search.org.
Zettair. 2009. The Zettair search engine. RMIT university. http://www.seg.rmit.edu.au/zettair/.
Mingjie Zhu, Shuming Shi, Nenghai Yu, and Ji-Rong Wen. 2008. Can phrase indexing help to process non-

phrase queries. In Proceedings of the ACM Conference on Information and Knowledge Management.
679–688.

Justin Zobel and Alistair Moffat. 2006. Inverted files for text search engines. Comput. Surv. 38, 2, 6:1–6:56.
Justin Zobel, Alistair Moffat, and Ron Sacks-Davis. 1993. Storage management for files of dynamic records.

In Proceedings of the Australian Database Conference. 26–38.
Zoie. 2008. Zoie real-time search and indexing system built on Apache Lucene. http://code.google.com/p/zoie/

wiki/ZoieMergePolicy.

Received September 2012; revised November 2013; accepted December 2013

ACM Transactions on the Web, Vol. 8, No. 3, Article 16, Publication date: June 2014.


